
www.manaraa.com

Mississippi State University Mississippi State University 

Scholars Junction Scholars Junction 

Theses and Dissertations Theses and Dissertations 

1-1-2014 

Prediction of Transitional Boundary Layers and Fully Turbulent Prediction of Transitional Boundary Layers and Fully Turbulent 

Free Shear Flows, using Reynolds Averaged Navier-Stokes Models Free Shear Flows, using Reynolds Averaged Navier-Stokes Models 

Maurin Alberto Lopez Varilla 

Follow this and additional works at: https://scholarsjunction.msstate.edu/td 

Recommended Citation Recommended Citation 
Varilla, Maurin Alberto Lopez, "Prediction of Transitional Boundary Layers and Fully Turbulent Free Shear 
Flows, using Reynolds Averaged Navier-Stokes Models" (2014). Theses and Dissertations. 3609. 
https://scholarsjunction.msstate.edu/td/3609 

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at 
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of 
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com. 

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3609?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com


www.manaraa.com

Automated Template B: Created by James Nail 2011V2.1 

Prediction of transitional boundary layers and fully turbulent free shear flows, using 

Reynolds averaged Navier-Stokes models  

By 

 

Maurin Alberto Lopez Varilla 

A Dissertation 

Submitted to the Faculty of 

Mississippi State University 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 

in Computational Engineering 

in the Bagley College of Engineering 

Mississippi State, Mississippi 

August 2014 



www.manaraa.com

 

 

Copyright by 

 

Maurin Alberto Lopez Varilla 

 

2014 



www.manaraa.com

 

 

Prediction of transitional boundary layers and fully turbulent free shear flows, using 

Reynolds averaged Navier-Stokes models  

 

By 

 

Maurin Alberto Lopez Varilla 

 

Approved: 

 ____________________________________ 

D. Keith Walters 

(Major Professor) 

 ____________________________________ 

David S. Thompson 

(Minor Professor) 

 ____________________________________ 

Ioana Banicescu 

(Committee Member) 

 ____________________________________ 

Seongjai Kim 

(Committee Member) 

 ____________________________________ 

Pasquale Cinnella 

(Graduate Coordinator) 

 ____________________________________ 

Jason Keith 

Interim Dean 

Bagley College of Engineering 



www.manaraa.com

 

 

Name: Maurin Alberto Lopez Varilla 

 

Date of Degree: August 10, 2014 

 

Institution: Mississippi State University 

 

Major Field: Computational Engineering 

 

Major Professor: D. Keith Walters 

 

Title of Study: Prediction of transitional boundary layers and fully turbulent free shear 

flows, using Reynolds averaged Navier-Stokes models  

 

Pages in Study: 105 

 

Candidate for Degree of Doctor of Philosophy 

One of the biggest unsolved problems of modern physics is the turbulence 

phenomena in fluid flow. The appearance of turbulence in a flow system is regularly 

determined by velocity and length scales of the system. If those scales are small the 

motion of the fluid is laminar, but at larger scales, disturbances appear and grow, leading 

the flow field to transition to a fully turbulent state. The prediction of transitional flow is 

critical for many complex fluid flow applications, such as aeronautical, aerospace, 

biomedical, automotive, chemical processing, heating and cooling systems, and 

meteorology. For example, in some cases the flow may remain laminar throughout a 

significant portion of a given domain, and fully turbulent simulations may produce results 

that can lead to inaccurate conclusions or inefficient design, due to an inability to resolve 

the details of the transition process. This work aims to develop, implement, and test a 

new model concept for the prediction of transitional flows using a linear eddy-viscosity 

RANS approach. The effects of transition are included through one additional transport 

equation for υ2 as an alternative to the Laminar Kinetic Energy (LKE) framework. Here 

υ2 is interpreted as the energy of fully turbulent, three-dimensional velocity fluctuations. 
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This dissertation presents two new single-point, physics-based turbulence models based 

on the transitional methodology mentioned above. The first one uses an existing 

transitional model as a baseline which is modified to accurately capture the physics of 

fully turbulent free shear flows. The model formulation was tested over several boundary 

layer and free shear flow test cases. The simulations show accurate results, qualitatively 

equal to the baseline model on transitional boundary layer test cases, and substantially 

improved over the baseline model for free shear flows. The second model uses the SST 

k  fully turbulent model and again the effects of transition are included through one 

additional transport equation for υ2. An initial version of the model is presented here. 

Simplicity of the formulation and ease of extension to other baseline models are two 

potential advantages of the new method. 
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CHAPTER I 

INTRODUCTION 

Introduction to turbulence modeling 

One of the fundamental features of fluid mechanics in real world applications is 

the presence of turbulence. The appearance of turbulence in a flow system is usually 

determined by the Reynolds number which is defined by the characteristic velocity and 

length scales of the system, if those scales are small enough the motion of the fluid is 

laminar, but at larger Reynolds numbers, disturbances appear and grow, leading the flow 

field to transition to a fully turbulent state. The prediction of transitional flow is critical 

for many complex fluid flow applications, such as, aeronautical, aerospace, biomedical, 

and automotive. For example, in some cases the boundary layer may remain laminar 

throughout a significant portion of a given domain, and fully turbulent simulations may 

produce results that can lead to inaccurate conclusions or inefficient design, due to an 

inability to resolve the details of the transition process. In order to address this problem, it 

is first noted that the motion of Newtonian fluids in any engineering application is fully 

described by the Navier-Stokes equations together with the equation for conservation of 

mass. With u being the vector of velocities, p the pressure, t the time and   the 

kinematic viscosity and assuming incompressibility the equations are   
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 (1.1) 

This is a set of non-linear partial differential equations for which unfortunately 

there is not a closed form mathematical expression for the solution. This fact (together 

with the importance of turbulence in current engineering applications) is the engine of the 

exponential growing of computer simulations in this field. Computational fluid dynamics 

(CFD) is currently used in a wide variety of application areas such as chemical 

processing, heating and cooling systems, meteorology, and marine systems, providing 

good results in research and industrial processes. Despite significant progress in CFD 

regarding robust mathematical algorithms and computational power, the accurate and 

realistic prediction of transitional flows still remains as one of the principal weaknesses 

in CFD applications [39]. Simulations of fluid motion go from the simplest 

(computationally inexpensive) algebraic models to the most accurate results 

(computationally intensive) of Direct Numerical Simulations (DNS). The evolution of 

categories for the solutions of the Navier-Stokes equation can be summarized as follows 

(in order of decreasing complexity): 

 DNS 

 Large Eddy Simulations (LES) 

 Reynolds Averaged Navier-Stokes Models (RANS) 

o Reynolds stress transport models 

o Non-linear eddy viscosity models 

o Linear eddy viscosity models 
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Direct Numerical Simulations (DNS), Large Eddy Simulations (LES), and 

Reynolds Averaged Navier-Stokes (RANS) are the most widely used techniques in CFD 

simulations. Of these three categories, each has advantages as well as limitations. For 

example, DNS provides the most accurate predictions but it is computationally intensive 

[40]. While LES is less expensive than DNS and performs well in separated flow regions, 

it requires immense computational resources in the near-wall region to get accurate 

results. RANS is the least expensive and generally shows good near-wall prediction 

capabilities but exhibits poor performance in regions of separated flow. Recent efforts to 

exploits the benefits of LES models far from the wall and the good near-wall results of 

RANS models have lead to a new set of hybrid RANS-LES models (HRL), examples of 

these types of models are presented in [41-44] 

DNS and LES 

Turbulent flow is dominated by instabilities and apparently random or chaotic 

motions. This behavior can be view as statistical fluctuations of all flow field variables 

(velocity, pressure, density, temperature, etc.) around their mean values. This random 

behavior makes turbulent flow difficult to predict. However, these fluctuations can be 

computed numerically using DNS or with some degree of approximation using LES. 

DNS involves a process where the equations (1.1) are computationally solved without 

any modeling (modifications) of their terms. With DNS all the spatial and time scales of 

the flow are solved, from the smallest (Kolmogorov) scales up to the largest scales of the 

flow field. This approach provides the most accurate results, which are in theory 

comparable with experimental data. DNS are of great value, because they can provide 

accurate numerical solutions (provided accurate numerical methods are used) of the 
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equations of fluid motion, which is also the final purpose of this project. However, when 

using DNS one needs to consider (besides the numerical accuracy) the accurate inclusion 

of boundary and initial conditions [29], but the most problematic aspect of this type of 

simulations is the large amount of computational power needed even for simple 

simulations due to the resolution of all scales of turbulence. To illustrate the problem, 

consider that the size of the smallest eddies (the Kolmogorov scales) is inversely 

proportional to 4
3

Re , also if n  is the number of points per unit length of the smallest 

eddies, the total number of mesh points required, and the number of arithmetic operations 

per time step will scale with 4
9

3
Ren . Because integration in time is also required, with a 

time step determined by the smallest turbulent time scales, then, in the best cases, the 

computational effort for DNS simulations is proportional to 
3

Re . This means that 

increasing the Reynolds number by a factor of 10, requires an increase in the 

computational power of at least 1000 and by a factor 4
9

10 = 178 for the memory 

requirements [28].  

In contrast to DNS, LES model belongs to the category of approximation models, 

which means that when using LES models, one is not actually solving the Navier-Stokes 

equations directly, but instead a modification or approximation of them. For LES, a new 

set of equations is obtained after applying a filtering operation to the original equations. 

The smallest scales, i.e., from the Kolmogorov scales to a certain threshold, are modeled 

and the remaining large-scale turbulent fluctuations are directly simulated. However, 

even though LES resolves only a part of the scale from the full cascade, it can be shown 

that if n  is the number of points per unit length of the large scales directly simulated, 
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then the number of arithmetic operations will scale with 4
3

3
Ren , and similar to above, 

due to the time integration, the total simulation effort scales with 4
9

Re . Despite the lower 

values of computational effort compared with DNS, LES is still computationally 

intensive for high Reynolds number flow. Due to the computational limitations, DNS and 

LES methods will not be feasible for industrial applications in the near future, moreover, 

according to Spalart [45] DNS and LES will be ready for realistic industrial applications 

around 2080 and 2045, respectively. 

Reynolds averaged Navier-Stokes equations 

From the previous sections, the advantages of using DNS and LES to attack a 

turbulence simulation problem are apparent. At the same time, it is clear that there are 

significant computational limitations when using those approaches, and because of that, 

DNS and LES are not always the best options to model complex applications. Fortunately 

there is a large family of RANS models, which have been proven to be reasonably 

accurate using very low computational resources compared with LES. Because of this 

balance between accuracy and computational cost, RANS models are the most used 

models in industry for practical CFD simulations. RANS models are based on the concept 

of decomposition of instantaneous flow variables into a combination of a mean (or 

average) component and a fluctuating component (Reynolds decomposition), which can 

be written as 

 
ppp

uuu




 (1.2) 
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where the overbar represents the averaging operator, m  is Reynolds averaged value and 

m   is the fluctuating component of the arbitrary representative variable m . Substituting 

equations (1.2) into equations (1.1), and applying the averaging operation to the 

equations, the Reynolds averaged equations of motion are obtained, which can be 

expressed in index notation as 

 

.0

)2(


























j

i

ijij

jjj

i

i

i

x

u

uus
xx

p

x

u
u

t

u


 (1.3) 

The previous set of equations is known as the Reynolds averaged Navier-Stokes 

equations (RANS), and they are completely written in terms of mean values, except for 

the term 
ij

uu    which is known as the Reynolds-stress tensor, and which is usually 

denoted by 
ij

  so that 
ijij

uu  . The Reynolds-stress tensor is a symmetric tensor, 

which is composed of six new unknown variables (due to symmetry) for three-

dimensional flows. Therefore, as a result of the averaging process, for three-dimensional 

cases, there are ten unknowns for the four equations in (1.3). This discrepancy between 

the number of equations and the number of variables is known as the closure problem of 

turbulence. 

Linear eddy viscosity models 

It was stated in the previous section that DNS and LES are often not practical for 

simulations with high Reynolds numbers or complex geometries. Also, in the previous 
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section, the Reynolds decomposition was introduced, producing new unknowns to the 

system. This leads to the closure problem of turbulence model theory. 

The purpose of RANS turbulence modeling is to produce approximations for the 

unknown quantities that inevitably appear after the averaging process due to the nonlinear 

nature of the Navier-Stokes equations. These approximations must be presented in terms 

of flow variables that are present already in the original set of equations. This closes the 

system. 

One approach to develop models is based on the Boussinesq hypothesis, which 

states that the Reynolds stress tensor 
ij

  is linearly proportional to the mean strain rate 

tensor. The mathematical formulation for this assumption is: 

 ijijTij
ks 

3

2
2   (1.4) 

where 
T

  is a scalar quantity called eddy viscosity and k  is the turbulent kinetic energy 

defined as 

  
ii

uuwvuk 
2

1

2

1 222
 (1.5) 

As a result, instead of the six unknown variables in the Reynolds stress tensor, the 

closure problem has been reduced to two scalar unknowns: the eddy viscosity and the 

turbulent kinetic energy. Moreover, it is possible to derive a transport equation for k  and 

add this equation to (1.3), thus there is only one variable left to calculate in order to close 

the system. The exact derivation of the equation for k  can be found in the open literature 

and is given by 
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 (1.6) 

where the term in the left hand side of equation (1.6) is the mean-flow material derivative 

of turbulent kinetic energy. The terms in the right hand of equation (1.6) are the 

production P  and dissipation rate of turbulent kinetic energy  , the viscous diffusion, 

and two turbulent transport terms. Note that the last 2 terms in equation (1.6) are also 

unknown terms produced by fluctuating parts of the velocity and pressure. In practical 

applications those terms are also modeled by quantities that only include mean flow 

variables. The dissipation per unit mass   and the turbulent kinetic energy k  are the 

most common variables used in RANS turbulence models. 

Finally, the eddy viscosity 
T

  is the only quantity left in this set of equations 

which does not have a clear method of calculation or approximation, therefore, linear 

eddy viscosity models arise from the different ways to calculate 
T

 , generally in terms 

of variables like k  and   for which model transport equations can be derived. 

RANS turbulence models 

Fully turbulent models 

Two-equation models are the most commonly used for industry applications. 

They usually involve the variables k ,   and/or  . The specific dissipation rate   is 

usually defined in terms of the turbulence dissipation  . A common expression is 

Ck


  , where C  is a constant which can changes from model to model. The landmark 

model in this category is the k  model of Jones and Launder [67], followed by a 
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variety of two-equation models based on the k  equation and an additional transport 

equation for a second turbulent quantity such as the k  [70], the k  [69] and the 

T
k   [68] models, where   , the turbulent time scale, is defined as 




1
 , and 






T

T
  is the kinematic eddy viscosity. The k  and k  models, are the most used 

models by the scientific and industrial community. However, the basic k  model has 

two major acknowledged problems associated with it: the lack of natural boundary 

conditions for the dissipation rate and the sensitivity to large adverse pressure gradients 

[69,29]. The k  model can alleviate these problems since the asymptotic behavior of 

  is known in more detail. For the interested reader, detailed discussions of these models 

may be found in [29, 30]. 

Laminar-to-turbulent transitional models 

Two-equation models were initially developed to predict only fully turbulent 

flows, but in recent years they have been improved to include transition-sensitive 

capabilities, an important feature in many practical applications. Transition-sensitive 

RANS models can usually be classified as either correlation-based [1], [31,32] or 

physics-based [4,5]. Correlations are obtained (for the first approach) from experimental 

data in simple geometries and flow conditions. Researchers also assume instantaneous 

flow transition in a particular location or they incorporate a transition zone, generally 

based on the universal intermittency profile of Dhawan and Narasimha [33]. However 

some of these models need additional information that make difficult their 

implementation into general purpose Computational Fluid Dynamics (CFD) codes, 
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especially for complex three-dimensional geometries. An example of this is the data 

correlation proposed in [31] 

 
Tu

tr
eR




91.6
163


 (1.7) 

where Tu , is the turbulent intensity. In this case transition is setup to initiate at the 

location where the local momentum thickness Reynolds number is larger than the above 

value. Therefore, in order to initiate transition, it is necessary to calculate the momentum 

thickness Reynolds number, which needs several mesh cells in the domain for its 

calculation. That feature makes the model more difficult to implement in general CFD 

codes.  

Recent approaches use additional transport equations to include the transitional 

capability to the fully turbulent models using empirical correlations in a more general 

fashion, examples are presented in [1,2]. In this case, the models take advantage of the 

information given by the evolution of the flow field to predict transition zones. 

Several new models have focused on the single-point approach, including the 

phenomenological models in [4,5] and [23]. Single-point models represent the easiest 

way to implement laminar, transition and turbulent flow prediction capability into general 

purpose CFD codes. One popular approach in this group of physic-based models is the 

adoption of an additional transport equation for laminar kinetic energy (LKE), used to 

represent pre-transitional, non-turbulent velocity fluctuations which lead to transition and 

fully turbulent flow [4]. 
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Final remarks 

The big picture is clear for CFD simulations of turbulent flow. There are three 

primary modeling techniques used in research and industrial problems involving 

turbulent flows. 

In the DNS method [40], the Navier-Stokes equations are solved directly without 

using any turbulence modeling. As all spatial and time scales of turbulence must be 

resolved, the DNS method provides results theoretically as accurate as experiments but 

requires immense computational resources. Spatially, it requires resolving the smallest 

Kolmogorov scale up to the largest integral scale of flow domain. Hence, the 

computational cost increases with increasing Reynolds number. Due to its computational 

limitation, the DNS method will not be feasible for industrial applications in the near 

future [45]. 

LES models [46] apply filtering operations to the Navier-Stokes equations to 

achieve resolved solutions of the large turbulent scales most responsible for momentum 

and energy transfer. LES models perform well in separated flow regions as they are 

capable of resolving the largest scales of turbulence that dominate momentum and energy 

transfer in the flow field. Near wall performance of the LES model is poor and requires a 

large amount of computational resources in the near wall region. As LES only resolves 

the larger turbulent scales and models the smaller scales, it requires significantly less 

computational resources than the DNS; but, it is still computationally intensive for high 

Reynolds number flows [47]. 

In the RANS modeling approach [48], the Navier-Stokes equations are averaged 

and all turbulent scales are modeled. Only the mean values of the flow variables are 
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resolved in this approach. RANS is based on empirical or at least semi-empirical 

information and thus resolves, in theory, less physics in comparison to DNS and LES 

models. As it models all spatial and time scales, the RANS modeling approach requires 

the least computational resources, which is the primary reason that RANS models are the 

most widely used in industrial applications. RANS models perform well in the near wall 

region due to the universality of the flow physics in the boundary layer, but they have 

practical limitations in separated flow regions. In theory, the Reynolds averaging process 

does not produce a loss of information [22]. Wang and Perot in [22] consider that the 

Reynolds stress tensor contain all the necessary information to accurately resolve the 

mean flow field, thus, any turbulence model that can model correctly the different 

components of the Reynolds stress tensor, should provide accurate results, for the case of 

either fully turbulent or transitional flow. 
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CHAPTER II 

MOTIVATION, CONTRIBUTIONS AND OBJECTIVES 

Motivation 

Due to the computational constraints inherent in DNS and LES, linear-eddy 

viscosity RANS models are still the preferred option for industrial applications; at the 

same time, our lack of knowledge about the underlying physics of turbulence impacts the 

accuracy and range of applicability of RANS models. For instance, there is no turbulence 

model generally considered by the research and applications communities as a superior 

alternative compared with the others. For example, models in [20] and [21] are capable of 

predicting fully turbulent flows, but unable to capture the transition process, but 

transitional models such as [4] and [5] do not perform as well as [20] for free shear flows 

as evidenced by [22]. 

RANS models remain popular as a result of the potential balance between 

accuracy and computational efficiency, therefore the number of RANS models that seek 

to incorporate more complex physics has increased in recent years. As more capabilities 

are added to RANS models in the form of enhanced methods for complex physical 

mechanisms (curvature, transition, etc.), they are likely to become even more useful to 

the industrial and scientific communities. While DNS and LES approaches will 

increasingly provide high-fidelity analysis capability, there seems little doubt that RANS 

model development will continue for the foreseeable future. 
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Objectives 

Three main objectives are proposed in this research effort: 

 The introduction and description of a new methodology to describe the 

transition process in the RANS framework, as an alternative to the laminar 

kinetic energy concept. In this methodology the energy in the wall normal 

fluctuation is used to initiate and control the transition process. 

 In addition to the first item, two phenomenological RANS linear eddy-

viscosity transitional models adopting the new methodology are 

developed: 

  The first model is an improved version of the 
LT

kk  

transitional model developed by Walters and Cokljat in [5]. The 

baseline model [5] is modified to improve the behaviour of the 

model in [5] for free shear layer flows such as jets, wakes, and 

mixing layers.  

 The second model uses the fully turbulent shear stress transport 

(SST) k  model developed by Menter in [21] as a baseline and 

includes the effects of transition through an additional transport 

equation for the wall normal velocity fluctuations that represents 

the energy of the fully turbulent three-dimensional velocity 

fluctuations. The simplicity in its mathematical formulation is the 

main advantage of this model. 
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Contributions 

One transition methodology is evaluated and reinterpreted in order to describe the 

laminar-to-turbulent transition process in a more physically correct sense than the one 

proposed by the laminar kinetic energy concept. Walters [5] states that one of the primary 

difficulties when developing phenomenological RANS turbulence models is that the 

physics of transition is not entirely understood and indeed is an active area of research in 

itself. 

The new methodology described in this document seeks to improve the 

understanding and hence the implementation of new phenomenological RANS-based 

transitional models. It is expected that new models can be developed (in addition to the 

two models presented in this document) that make used of the proposed methodology. 

The 
LT

kk  transitional model developed by Walters and Cokljat in [5] has 

achieved wide acceptance due to its easy to implement nature and reasonable accuracy in 

resolving transitional flows. Nevertheless, there are references such as [22] and [26] that 

have evidenced weaknesses of the transitional model for fully turbulent free shear flows. 

The model proposed in chapter V is designed to inherit all of the positive characteristics 

of the 
LT

kk  transitional model for transitional boundary layers, but to correct the 

behavior of the 
LT

kk  model described in [22] and [26] for fully turbulent free 

shear flows.  

The new model presented in chapter V has been developed using a more 

physically correct methodology to include transitional capabilities to the model. It will be 

superior for fully turbulent free shear flows compared with the 
LT

kk  model, but it 

will exhibit the same characteristics in transitional boundary layers. This implies that the 
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range of applications of the new model is wider than the 
LT

kk  model, which is 

important for industrial applications. 

The model in chapter V improves the accuracy of the 
LT

kk  model in [5] 

when the term that controls the behavior in the wake region is replaced by a more 

elaborated SST-like term. It is valid to say that the gain in accuracy was achieved by 

increasing the complexity of the model. 

The second transitional model presented in chapter VI is a single-point, physics-

based method that adopts the transition concept presented mention before and described 

in detail in chapter III. The version of the model presented here uses the SST k  

model as the baseline, and includes the effects of transition through one additional 

transport equation for a new variable that represents the energy of fully turbulent, three-

dimensional velocity fluctuations. 

The new transitional model presented in chapter VI is an initial version of a 

model that is intended to be dramatically simpler in the formulation of the equations 

and with fewer model constants than the model presented in chapter V, but with at least 

the same accuracy. Simplicity of the formulation and ease of extension to other baseline 

models are two potential advantages of the new method. 
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LT

kk  

Transitional Model”. In preparation. 

 

3. M. Lopez., D. K. Walters., “A simpler phenomenological model formulation for 

RANS simulations”. In preparation. 

Conference proceedings 

1. M. Lopez. D. K. Walters. “Laminar-to-Turbulent Boundary Layer Prediction 

Using an Alternative to the Laminar Kinetic Energy Approach”. Proceedings, 
ASME 2012 International Mechanical Engineering Congress & Exposition. 9-15 

November 2012, Houston, Texas. 
 

2. D. K. Walters. M. Lopez. “Phenomenological RANS Modeling of Transitional 

Flow:An Alternative to the Laminar Kinetic Energy Approach”. Proceedings, 9th 

International ERCOFTAC Symposium on Engineering Turbulence Modelling and 

Measurements. 6 - 8 June 2012, Thessaloniki, Greece. 

Presentations 

1. M. Lopez. D. K. Walters. 2014 “Prediction of transitional boundary layers and 

fully turbulent free shear flows, using Reynolds Average Navier-Stokes models,” 

2014 Graduate research poster competition, organized by the college of 

engineering at Mississippi State University. 

 

2. M. Lopez. D. K. Walters., 2013, “Accurate resolution of laminar, transitional and 

turbulent regions using an improved RANS model,” Finalist in the Graduate paper 

competition. Society of Hispanic Professional Engineers national conference. 

Indianapolis, November, 2013 

 

3. M. Lopez. D. K. Walters., 2013, “A New Phenomenological RANS Model for the 

Prediction of Transitional Boundary Layers,” Poster presentation in the summer 

school: Flow, Geometric Motion, Deformation, and Mass Transport in 

Physiological Processes. IMA, Minneapolis. 
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4. M. Lopez. D. K. Walters., 2012, “On the Development of a Simpler Phenomenological 

Linear eddy-viscosity RANS Model for Transitional Flow,” 9th Differential Equations & 

Computational Simulations Conference, Starkville, Mississippi. 
 

5. M. Lopez. D. K. Walters., 2012, “A New Phenomenological RANS Modeling of 

Transitional Flow. 10th annual Graduate Student Research Symposium. 

Mississippi State University. 

 

Organization 

The following chapters of this document are organized according to the 

objectives. In Chapter III the new methodology to describe the transition process is 

discussed, this methodology is used in the two turbulence models presented in this 

document. Chapter IV includes a small modification perform over the original model 

presented by Walters and Cokljat [5]. This modification will be further used in the 

development of the model presented in chapter V. Chapter V contains the description of 

the first transitional model that improves the accuracy of the model proposed in [5] for 

free shear flows. Test cases covering transitional boundary layers and free shear flows are 

included to test the performance of the modified model. Chapter VI describes the initial 

development of a new transitional model. The model is intended to be simpler than 

existing RANS transitional models in terms of its description and complexity of the 

equations, but with at least the same accuracy. Chapter VII contains final conclusion 

about the complete research. 
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CHAPTER III 

LAMINAR TO TUBULENT TRANSITION CONCEPT FOR RANS MODELS 

Introduction 

Transitional flow phenomena are observed in a wide range of engineering 

applications including aerospace, aeronautics, biomedical, wind turbines, etc. 

Transitional flow is of vital importance in aerodynamic simulations. For example, in 

some cases the boundary layer may remain laminar throughout a significant portion of 

the domain, and fully turbulent simulations may produce results that can lead to 

inaccurate conclusions or inefficient design. The inherent behavior of transitional 

phenomena is very complex and still not understood with respect to many physical 

aspects. Using CFD, extensive research has been performed in the areas of turbulence 

modeling with improvements over the years. However, transition sensitive CFD 

simulations is still a very active research field, where questions still remain about the true 

nature of the physics of transitional flows. 

In recent years researchers have tried to predict boundary layer transition using 

several approaches that include Direct Numerical Simulations [49], low Reynolds 

number eddy viscosity turbulence models [50-53], incorporation of an empirical 

correlation to a fully turbulent RANS model [24, 54], or the addition of transport 

equations to fully turbulent models in order to control the transition process [1-5] etc. 
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Due to wide range of applicability and the balance between computational 

resources used and accuracy of RANS models, a number of researchers have developed 

transitional models based on the low Reynolds number eddy viscosity framework [50, 

51]. In these types of models, the concept of “diffusion controlled” transition is 

employed, i.e., transition triggered by the diffusion of freestream turbulence into the 

boundary layer, [50]. In [51] a two-equation turbulence model to predict the transitional 

flow was proposed. In this model, two different transition specific closure coefficients 

were formulated using linear stability theory. Although this transitional flow prediction 

approach achieved some degree of success, it has been proved that the transitional 

mechanisms are highly dependent on initial conditions and flow solution methods instead 

of representing the inherent transitional flow physics [52, 53]. 

Some other models [33, 55] have attempted to predict transitional flow fields by 

coupling an empirical transition correlation to a fully turbulent RANS model. In this 

approach, correlations are obtained from experimental data in simple geometries and flow 

conditions. Generally, the correlations relate turbulence intensity to the critical 

momentum thickness Reynolds number at which transition occurs. In these approaches 

researchers usually assume instantaneous flow transition in a particular location or they 

incorporate a transition zone, generally based on the universal intermittency profile of 

Dhawan and Narasimha [33]. Although this approach provides sufficient accuracy, its 

implementation is problematic in modern CFD codes. Such correlation-based transition 

models require the comparison between the momentum thickness Reynolds number and 

transition onset momentum thickness Reynolds number. The calculation of such 
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quantities is generally difficult for parallel computations of complex three-dimensional 

geometries using unstructured meshes. 

Recent transition modeling approaches employ additional transport equations with 

the RANS-based turbulence models. Additional model terms may also be used to address 

the transitional behavior in the simulation. Within this recent transitional modeling 

approach, they can usually be classified as either correlation-based [1, 2], [31-33] and 

[55] or physics-based [4, 5] and [56, 57]. Wang and Perot [33] applied additional 

equations for turbulence potential terms to formulate a single–point, physics based 

transition model. Walters and Laylek [4] developed a phenomenological RANS-based, 

single-point, transitional model that addresses in-depth transitional flow physics without 

intermittency factors. The newest version of this model was developed by Walters and 

Cokljat in [5]. Suzen and Huang [56] proposed a correlation-based transition model that 

includes a transport equation for an intermittency factor. Steelant and Dick [57] 

developed a transport equation for the intermittency factor and incorporated it into 

conditioned Navier-Stokes equations. The transport equation was based in the 

intermittency distribution of Dhawan and Narasimha [33]. Menter et al. [1] proposed a 

single-point, correlation-based transition model that includes two different transport 

equations: one for the intermittency factor and the other for the transition onset Reynolds 

number. To date, single-point transition models have been widely accepted by the 

scientific community because they do not require non-local information in the simulation; 

thus, they can be easily implemented in modern CFD codes. The single-point transition 

models of Wang and Perot [33], Walters and Cokljat [5], and Menter et al. [1] have 

achieved wide acceptance due to their easy to implement nature. 
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Among the physics-based transitional models, one popular approach is the 

adoption of an additional transport equation for laminar kinetic energy (LKE), used to 

represent pre-transitional, non-turbulent velocity fluctuations which lead to transition and 

full turbulence [6]. The models presented by Walters and Laylek [4] and Walters and 

Cokljat [5] are examples of such models. In the latter, a transport equation for the laminar 

kinetic energy is included and the transition process is seen as a transfer of energy from 

the stream wise non-turbulent velocity fluctuations to the fully turbulent 3-dimensional 

velocity fluctuations. 

It is well known that there are number of researchers, including our group in 

Mississippi State, who have developed successful models using the LKE concept. This 

research proposes a description of the transition process based on a modification of this 

concept. Instead of the non-turbulent velocity fluctuations approach embedded in the 

LKE concept, this research proposes the introduction of a new variable that represents the 

wall-normal turbulent velocity fluctuation, which is responsible for the initiation of 

transition [23, 25]. 

Background and Methodology 

Wang and Perot [24] argue that the full set of RANS equations are equally valid 

in the pretransitional, transitional and fully turbulent regions, which means that 

transitional as well as turbulent fluctuation may be modeled through the Reynolds stress 

tensor. The exact form of the Reynolds stress transport equation for incompressible flow 

is: 
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The first two terms in (3.1), viscous diffusion and production, do not need any modeling 

if equation (3.1) is solved, but the pressure strain, dissipation, turbulence transport and 

pressure transport terms require modeling, and none of them can be neglected for fully 

turbulent flows. In theory, these terms, also non negligible in the transition region where 

fluctuations are relatively small, have the capabilities to control the transition process as 

well. 

Of particular interest are the production term,  
kikjkjki

suusuu  , which 

transfers energy from the mean to the fluctuating flow, and the pressure strain term, 
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p , which serves to redistribute energy among the normal Reynolds stress 

components and modify the shear stress components. The pressure strain term is usually 

modeled as a "return to isotropy" that tends to redistribute the energy from high energy 

components to lower energy components. Moreover, this term is expressed as the sum of 

a rapid part, which incorporates interactions between turbulent eddies and the mean 

velocity field, and a slow part that incorporates inter-eddy interactions. 

In [25], Walters summarizes the production of Reynolds stress components with 

the following steps: 1) transfer of energy from the mean flow to uu   via interaction of 

vu   with the mean strain rate; 2) transfer of energy from uu   to vv   and ww   due to 
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the action of pressure strain; and 3) generation of turbulent shear stress vu   via the 

interaction of vv   with the mean strain rate. 

Large eddy simulations by Voke and Yang [7] show that in the pretransitional 

region, step 2 does not occur. The shear sheltering effect apparently inhibits the 

redistribution of energy, which is caused by the pressure strain term in the fully turbulent 

region. Their results also show evidence of a positive contribution of the pressure strain 

term to the uu   component very close to the wall, but it suppresses rather than increases 

the wall-normal component vv  . This behavior is further evident in more recent DNS 

and LES simulations [8-10], i.e, no peak in either vv   or ww   occurs within the 

pretransitional region of the boundary layer where the Reynolds stress budgets are clearly 

dominated by the production and dissipation terms. 

Assuming that the pressure strain terms are negligible in the pretransitional 

region, the following set of simplified (approximate) equations is obtained from (3.1): 
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From equations (3.4) and (3.5), it is clear that the wall-normal ( vv  ) and spanwise ( ww ) 

Reynolds stress components do not exhibit appreciable growth in the prestransitional 
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boundary layer. In addition to that, following [11], the freestream turbulence enters the 

boundary layer, either at the leading edge or through diffusive transport of low frequency 

modes farther downstream, which means that only the wall-normal component of this 

entrained turbulence leads to the growth of Klebanoff modes, and, in fact, the dependence 

of pretransitional energy production on wall-normal freestream fluctuations is well 

established [7-15]. 

The laminar boundary layer theory reports that the peak velocity gradient 
y

u




 

varies as 
2/1

Re
x

. With negligible dissipation and diffusion, it is expected from (3.4) and 

(3.3) that the wall-normal Reynolds stress component vv   remains approximately 

constant in the streamwise direction, which further leads vu   to an approximate 

streamwise growth rate 
2/1

Re~
x

vu  . Likewise the streamwise Reynolds stress 

component, in the absence of significant dissipation or diffusive transport, will exhibit a 

growth rate of 
x

uu Re~ . This linear streamwise growth rate behavior of pretransitional 

kinetic energy has been reported in previous experiments and simulations [14,15]. 

Finally, the transition process can be viewed as the “activation” of the pressure 

strain term, responsible for redistributing the energy and tending to return the fluctuations 

toward isotropy, leading to a rapid increase in the spanwise and especially wall-normal 

energy components. This process produces the well known eddy scale range and energy 

cascade process characteristic of high-Re turbulence. 

To summarize the above discussion, Walters in [25] pointed out some key 

physical features in the dynamic of Reynolds stress component evolution that play an 
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important role in the RANS-based description of transitional boundary layer. These 

include: 1) production of one-dimensional streamwise fluctuation energy in the 

pretransitional region by entrained freeestream turbulence interacting with the mean 

strainrate; 2) minimal generation of three-dimensional (normal and spanwise) 

fluctuations in the pretransitional region, due to suppression of the pressure strain 

mechanism found in turbulent flow; and 3) transition initiation due to an increase in 

magnitude of the pressure strain term, followed by a rapid grow of three-dimensional 

fluctuations more indicative of fully turbulent flow. 

Proposed transition concept 

This section discusses the transition concept that will be used for the two models 

in chapters V and VI. The concept is based on the description of the transition process 

outlined in the previous section, and it is presented as an alternative to the LKE approach. 

Assuming that the pretransitional region develops due to a suppression of the 

pressure-strain terms in the Reynolds stress transport equation, transition is initiated with 

the activation of these terms due to nonlinear instability mechanisms, which results in a 

transfer of energy from streamwise to the wall normal (and spanwise) components and 

leads to a rapid rise in turbulence production. In most LKE models, such as [5] for 

example, this transfer of energy is made from the LKE to the turbulent kinetic energy 

trough some terms included in the respective transport equations. The versions of the 

models presented here include the initiation of the transition process by the rapid increase 

of energy in the fully turbulent, three-dimensional velocity fluctuations which will be 

represented by the variable 2
v . This modeling approach, initially introduced by Lopez 
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and Walters in [23], leads to slow growth of fluctuating energy in the pretransitional 

region and relaxation towards a fully turbulent model result downstream of transition. 

The motivation for using the variable 2
v  comes from several references in the 

open literature. As discussed above, the LES results of Voke and Yang [7] show a 

positive contribution of the pressure strain term to the streamwise Reynolds stress 

component in the pretransitional region, presumably a wall reflection effect, which works 

to suppress rather than increase the wall-normal component. This inhibits growth of the 

shear stress component and causes relatively low production of turbulent kinetic energy. 

Other studies, [8-10], show the same behavior, and report no peak in vv   or ww   within 

the pretransitional region of the boundary layer. Furthermore, these studies have 

demonstrated that only the wall-normal component of this entrained freestream 

turbulence leads to the growth of Klebanoff modes, and that the onset of transition 

coincides with a sudden increase in wall normal energy. In fact, [7] showed that pure 

streamwise disturbances at the inflow are ineffective at forcing transition, while wall-

normal disturbances are virtually as effective as full isotropic disturbances. These 

considerations have led to the adoption of the 
2

vk  framework as an alternative to 

the 
L

kk  model approach in [5] for development of a phenomenological transition-

sensitive model. 
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CHAPTER IV 

A PHYSICS-BASED CORRECTION OF THE 
LT

kk  MODEL 

Introduction 

The single-point physics-based 
LT

kk  transition model initially developed 

by Walters and Laylek [4] and further refined by Walters and Cokljat [5] incorporates an 

additional transport equation for laminar kinetic energy (
L

k ) to a modified form of a two-

equation eddy viscosity turbulence model. Following [5], for low freestream turbulence 

intensity (less than 1%), the small velocity fluctuation behaves as self-sustained 

instabilities better known as Tollmien-Schlichting waves [58]. As the freestream 

turbulence intensity increases, the instability increases with the high amplitude 

streamwise fluctuations and further increase in this fluctuation leads to transition through 

the breakdown of the streamwise fluctuations. This transition process is known as bypass 

transition. In the model, the laminar-to-turbulent transition process itself is represented by 

a transfer of energy from the laminar kinetic energy 
L

k  to the turbulent kinetic energy kT. 

The variable 
T

k  is assumed to represent the energy of the fully turbulent fluctuations that 

display the characteristics of fully turbulent flow, such as strong three-dimensionality, 

multiple length and time-scales, energy cascading, and significant viscous dissipation. 

The initiation of the transition process in the model is based on local (single-point) flow 

conditions. The transition location is determined by ratio of turbulent production 
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timescale to the molecular diffusion time-scale; when this ratio reaches a critical point the 

transition process is initiated. 

Model equations 

The complete presentation of the model equations is not included in this section; 

they can be found in [5]. However, reference [5] contains several typographical errors 

that have been corrected [59] and will be outlined in this section. One additional change, 

not yet reported in the open literature, will be made in this section to the 
LT

kk  

model presented in [5]. This last modification corrects the behavior of the production of 

laminar kinetic energy away from the wall. 

The general form of the model equations in their incompressible form is given by: 
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The first typographical correction made to [5] is the third term in the right hand side of 

the omega equation (-
2

2



C  in [5]). 

Equation (11) in [5] defines the damping function 
W

f  as  
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but the correct formulation for 
W

f  includes the exponent 
3

2  as in the original version of 

Walters and Leylek [4], thus the correct form is 
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Finally, the intermittency damping function defined in equation (16) in [5] as 

 

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should be corrected to 
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The previous 3 corrections are just typographical errors in [5]. These corrections should 

be made in order to reproduce the results presented in [5]. 

This research has found that a deeper modification has to be made to the 


LT

kk  transitional model described in [5]. The production of 
L

k  is defined as the 

interaction of Reynolds stresses that are associated with the pretransitional velocity 

fluctuations and mean shear, and is governed by the large-scale near-wall turbulent 

fluctuations. 

The production of laminar kinetic energy 
Lk

P  is defined in [5] in equations (17)-

(22) as 
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The limit is applied to ensure satisfaction of the realizability constraint for the total 

Reynolds stress contribution. The production term is comprised of two parts: the first 

addresses the development of Klebanoff modes and the second addresses self-excited 

(i.e., natural) modes ([5]) 

Note that as the model term is currently expressed, the second term is proportional 

to the wall distance raised to a power of 4. This formulation works well and describes 

correct physical dependence for boundary layer flows (wall-bounded flows), but the 

entire term could be eventually dominated by the distance from the wall for non-

boundary layer flows. In fact the formulation can be completely incorrect for fully 

turbulent free shear flows, as evidenced by the results in this chapter. To correct this, the 

term should be made proportional to a length scale that scales with the wall distance in 

near-wall flows, and scales with the turbulent integral length scale in farfield flows. 

To limit the production of natural modes in zones far from the wall in fully 

turbulent flows where this mechanism is not active, the second term in the “large-scale” 

eddy viscosity should be modified. The proposed modification to equation (4.9) is 
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Note that instead of the wall distance term d , the 
eff

d  term is used and it is defined as  

 



C
d

eff

eff


 (4.11) 

where  
Teff

dC 


,min  and 
C , 

T
  are identical to those given in [5]. 

Numerical results 

The original version of the 
LT

kk  model presented in [5] (with the 

typographical errors corrected) and the version with the “large-scale” eddy viscosity 

modified by equation (4.10) have been tested using a round jet flow. 

 

Figure 4.1 Sketch of a round jet flow 
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Figure 4.1 shows a schematic of the round jet flow in three dimensions. The fluid 

travels inside of a circular pipe (from left to right in figure 4.1) until it reaches the outlet 

of the pipe (jet exit) and it is dispersed in an open space. The flow field is symmetric with 

respect to the centerline of the domain in all directions. 

Figure 4.2 shows the axisymmetric two-dimensional domain and mesh used to 

perform the simulations. Only half of physical domain was used in the calculations, 

taking the centerline of the jet as a symmetry axis. In the jet exit, the velocity was 

sm2.56  and turbulence intensity less than 0.58%. In experimental studies, usually the 

flow is manipulated to transition to turbulent before the exit of the jet.  

Two grids were used in this study. In the first one the length of the channel before 

the exit is 3H. The fully turbulent SST k  model was run in this domain and profiles 

of velocity, turbulent kinetic energy and specific dissipation rate were taken at a distance 

1.5H from the inlet of the channel. In the second mesh, the length of the channel before 

the exit is 1.5H. The profiles obtained from the SST model were used as inlet conditions 

for the 
LT

kk  transitional model to ensure a fully turbulent flow. 
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Figure 4.2 Mesh used for the fully turbulent jet flow simulations 

 

Figure 4.3 Contours of velocity in the streamwise direction computed with the 


LT

kk  model for the round jet flow  



www.manaraa.com

 

35 

Figure 4.3 shows the contours of velocity computed with the 
LT

kk  model, 

using the domain and mesh presented in figure 4.2. The maximum velocity is reached at 

the exit of jet, and decreases as the flow moves downstream. The velocity did not show 

any alteration by the change made to “large-scale” eddy viscosity. On the other hand, the 

production of laminar kinetic energy (and hence the laminar kinetic energy itself), show 

significant changes that will be highlighted here. 

 

Figure 4.4 Contours of laminar kinetic energy. 

(a) original model (with typographical error corrected), (b) model with modified “large-

scale” eddy viscosity 
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Figure 4.5 Close-up view of contours of laminar kinetic energy.  

(a) original model (with typographical error corrected), (b) model with modified “large-

scale” eddy viscosity 

 

Figures 4.4 and 4.5 show the contours of laminar kinetic energy for the fully 

turbulent jet flow. It is clear from the figures that the levels of laminar kinetic energy 

increase after the outlet of the jet for the original version of the 
LT

kk  model. This 

is clearly an incorrect behavior, which is corrected with the modification of the “large-

scale” eddy viscosity as demonstrated by figures 4.4(b) and 4.5(b). The maximum value 

of laminar kinetic energy for the original model was 43.3, and it was reached after the 

outlet of the jet, while the modified version reported a maximum of 10.0. However all 
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figures were plotted using the same scales (minimum value of 0.0 and maximum value of 

43.3) for comparison purposes 

 

Figure 4.6 Contours of production of laminar kinetic energy. 

(a) original model (with typographical error corrected), (b) Model with modified “large-

scale” eddy viscosity. 

 

Figure 4.6 shows the contours of the production of laminar kinetic energy that one 

more time confirm the heavy production of laminar kinetic energy in fully turbulent 

zones, where it should decay rather than increase. Again, figure 4.6(b) shows that the 

modification in equations 4.10 and 4.11 effectively corrects this issue. 
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Conclusions 

A modification to the 
LT

kk  model developed by Walters and Cokljat in [5] 

was proposed and successfully tested in a fully turbulent jet flow. The modification to the 

“large-scale” eddy viscosity described in this chapter is not a typographical error of the 

original version of the model and the results have demonstrated that influences and 

corrects some issues on the physical mechanism of production of laminar kinetic energy 

for regions far from the wall. 
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CHAPTER V 

A MODIFIED VERSION OF THE 
LT

kk  MODEL  

Introduction 

The 
LT

kk  model 

The laminar kinetic energy concept is currently one of the most commonly used 

approaches to develop RANS models with transitional capabilities. It was first introduced 

by Mayle and Schulz in [6]. In general, the laminar kinetic energy represents the energy 

of velocity fluctuations in the pretransitional region. These fluctuations are not a result of 

the cascade of scale, but they generate as a consequence of the penetration of free-stream 

disturbances into the boundary layer [62]. Unlike turbulent kinetic energy, the laminar 

kinetic energy is dominated only by the stream-wise velocity fluctuations. 

The single-point physics-based 
LT

kk  transition model initially developed 

by Walters and Laylek [4] and further refined by Walters and Cokljat [5] is one of the 

most successful transitional models that use the laminar kinetic energy concept. In [5], 

the model was tested for a variety of cases that demonstrated the ability of the model to 

predict transitional flows. The model has been further tested by researchers with 

satisfactory results. Wang and Walters [64] demonstrated the ability of the model to 

predict transitional flows over marine propeller systems, where fully turbulent models are 

usually used, leading in some cases to accuracy degradation. Bernardini et al [63] 
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demonstrated that the 
LT

kk  model performs well versus the SST 
 Re  model 

[1] for boundary layer separation on a turbine blade for different values of Reynolds 

number. 

Several modifications have been developed over the years. Chitta et al [65] 

incorporated sensitivity to high curvature domains to the transitional 
LT

kk  model 

through the addition of one transport equation to the system. Tuner [62] proposed several 

modifications for the effective length scale and the shear sheltering damping function to 

correct some apparent issues of the 
LT

kk  model when tested on the F1 Valeo-CD 

airfoil. Alam et al [66] used the 
LT

kk  model to build a transition-sensitive hybrid 

RANS/LES model with promising advantages over others transitional hybrid models. 

A general form of the equations is given in the previous chapter. A detailed 

expression for each term in equations (4.1)-(4.3) is given in [5]. Note that [5] contains 

some typographical errors that were corrected in the previous chapter. 

The shear stress transport (SST) k  model 

The Shear-Stress Transport (SST k ) model developed by Menter [48] is 

based on the transport of the principal shear stress to facilitate the prediction of adverse 

pressure-gradient-dominant flows. The model combines the advantages of the k -

based model near the wall and the k  model for free shear flows. It is one of the most 

used fully turbulent models for research purposes or industrial applications [61]. 

The general form of the equations is given by 

  
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 (5.2) 

and the kinematic eddy viscosity is defined by 

 
),max(

21

1

SFa

ka

T


   (5.3) 

where 
1

a  is a constant and S  is the strain rate magnitude. The functions 
1

F  and 
2

F  are 

the blending functions that make the transition from a k  based model near the wall 

to a k  model for free shear flows. For a complete description of the terms in the 

equations see [48]. 

A new model formulation  

The model presented in this section is a modification of the transitional model 

developed by Walters and Cokljat in [5]. The new version incorporates the new variable 

2
v  to control the transition process as described in chapter III. The model uses a 


2

vk  framework instead of the typical 
LT

kk  representation. In this new 

formulation the turbulent kinetic energy k  represents the energy of both fully turbulent 

and pre-transitional velocity fluctuations and the specific dissipation rate   has the same 

definition as in [5]. With the definition for k  given previously, 
L

k can be defined as 

2
vkk

L
 . 

For simplicity the equations are presented in their incompressible forms. The 

model equations have the compact form:  
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As a result of the change of variables, note that equation (5.4) does not include the 

transitions terms 
BP

R  and 
NAT

R  as in [5]. In the k  equation, those terms were used to 

represent the transfer of energy from the non-turbulent pretransitional fluctuations (
L

k ) to 

the fully turbulent fluctuations (
T

k ). In this new version, 2
v

 is suppressed in 

pretransitional region. Transition initiates when the value of the term 
BP

R  becomes non-

negligible, representing “activation” of the pressure strain terms, followed by the growth 

of three-dimensional, fully turbulent fluctuations ( 2
v ). Equation (5.6) now incorporates a 

cross diffusion terms as in the SST k  model very similar to the one in equation (5.2) 

that will ensure the correct prediction of the boundary layer wake region, where the 

original model in [5] shows weaknesses evidenced in [22]. 

The definitions of the following terms are similar to the version of the model in 

[5]. The production terms are expressed as: 
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The turbulent viscosity 
T

  used in the momentum equation is the sum of the 

small and large scale contributions 

 
lTTT S ,,

   (5.8) 

The small-scale eddy viscosity and the effective small-scale turbulence are expressed as 
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The effective (wall limited) turbulent length scale 
eff

  and the damping function 
W

f  are 

defined as  
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The viscous wall effect is incorporated as: 
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The shear sheltering effect responsible for inhibiting the production of three dimensional 

velocity fluctuations in the pretransitional region is expressed as 
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The turbulent viscosity coefficient and the intermittency damping function for the 

turbulence production are defined as 
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The large scale eddy viscosity from the equation (5.8) is defined as 
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Here, the limit is applied to satisfy the realizability constraint for the total Reynolds stress 

contribution. Note that the second part of this term is slightly different from the 

corresponding term in [5]. Here, instead of the wall distance term d , the term 
eff

d is used 

and it is defined as  

 



C
d

eff

eff


 (5.16) 

this will limit the production of natural modes in zones far from the wall in fully turbulent 

flows, where this mechanism should not be produce. A description of this modification is 

discussed in chapter IV and [26]. 

 2

l
v  is the large-scale turbulence contribution, and it is given by 
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Other terms in (5.15) are defined as 
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The near-wall dissipation terms for k  and 
2

v  are expressed as 
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The effective diffusivity 
T

  in the turbulent transport term is defined by 

 effST
vf 



2*


 (5.21) 

The cross diffusion term in the   equation is similar to the one in the fully 

turbulent SST k - model. The term is included to improve the behavior of the model in 

the wake region and in separated shear layers, where the SST k -  model has proven to 

be effective [22],[27]. The blending function 
*

1
F  is defined as 
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in which the shear-sheltering damping function inhibits the fully turbulent effects of the 

1
F  function in the pretransitional region of the boundary layer. The 

1
F  function is defined 

similar to the SST k -  model 
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with 
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The terms representing the natural and bypass transition are defined as 

 WBPRBPNATNATRNAT
fvkCRvkCR  )(,)(

22

,


 (5.25) 

As discussed in [5], transition is initiated when the characteristic time-scale for 

turbulence production is smaller than the viscous diffusion time scale of pretransitional 

fluctuations. This process is controlled by the transition initiation terms 
NAT

  and 
BP

 . 

The expressions for these two terms are 
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To include heat transfer effects, the turbulent heat flux vector can be modeled 

using a turbulent thermal diffusivity 
  

 i
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Model constants are given in Table 5.1. 

Table 5.1 Model constants 

04.4
0
A  1000

,


critTS
C  3.0

3



C  

12.2
S

A  02.0
,


NATR
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R

C
  
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

A  6

11
10*4.3


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
C  
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BP
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
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NC
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1,



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2
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
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,


critNAT

C  44.0
1



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INT
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2



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Boundary conditions 

The boundary conditions follow the ideas of [5]. At solid boundaries the no slip 

condition enforces 

 0
2
 vk  (5.31) 

and a zero normal gradient condition is used for   

 

0








 (5.32) 

where   is the coordinate normal to the wall. 

At the inlet, the values for k  and   are calculated exactly as in other k -  type 

models. The turbulence kinetic energy is usually obtained based on the inlet turbulence 

intensity 


Tu , assuming isotropic freestream turbulence 
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 




U

k

Tu
3

2

 (5.33) 

The value of   is chosen to match the available freestream information. For 

example, if the turbulent length scale or decay rate is known, then   is chosen to 

appropriately reproduce the freestream conditions. Since a good representation for 2
v  is 

given by 
L

kkv 
2

 and the appropriate inlet boundary condition for 
L

k  is 0
L

k  [5], 

then it is suggested to use kv 
2  will be used at the inlet. 

Test cases 

The model was implemented as a User-Defined Function (UDF) in the 

commercial finite volume CFD solver ANSYS FLUENT version 14.0 [60]. The pressure-

based solver option was used with the SIMPLE method for pressure-velocity coupling. 

This approach has been well demonstrated to be appropriate for incompressible single-

phase flows. All results presented in this document used a second-order upwind-based 

spatial discretization scheme. The test cases selected include standard boundary layer 

cases along with an airfoil test case in order to check the behavior of the model for 

transitional boundary layers. The model is expected to behave qualitatively equal to the 


LT

kk  model in these cases. Two free shear flows cases are included as well, to 

demonstrate the improvements in accuracy due to the modifications presented in this 

document, for regions of separated shear layer flow. 
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Boundary layer test cases 

The model was initially tested and calibrated on boundary layer cases. The new 

model was expected to have a similar behavior for transitional boundary layers to its 

baseline model. Flat plate cases, with and without pressure gradients, were chosen, as 

well as an airfoil test case, to test the model on transitional flows. A fully turbulent 

backward facing step flow test case was also included. 

Flat plate 

The transition prediction behavior of the model was initially tested in zero-

pressure and variable pressure gradient flat plate boundary layers, with different 

freestream turbulence intensities. The test cases chosen match the T3A, T3B, T3A- and 

T3C2 validation cases from the classic ERCOFTAC database [18]. The T3 test cases 

were developed specifically for validation of transition models and have become a 

recognized standard in the research community.  

For each of the flat plate test cases, the computational domain was constructed to 

match the experimental geometry. A symmetry plane was applied at the bottom of the 

domain, upstream of the leading edge. This was done to allow a natural stagnation and 

boundary layer initiation. The other boundaries were set as velocity inlet, pressure outlet, 

wall, and symmetry planes, as appropriate. The extent of the domain in the vertical (y) 

direction was chosen to be far enough from the plate to ensure negligible acceleration of 

the freestream due to the finite plate thickness and boundary layer development. 

The meshes, shown in Figure 5.1, consisted of block-structured quadrilaterals 

clustered in the near-wall and leading edge regions, and triangular elements far from the 

wall for the pressure gradient case. The first near-wall cell was placed such that y+ was 
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less than one over the entire plate surface for all cases considered. The number of grid 

cells in the two-dimensional meshes was 30,196 and 24000. The top wall for the second 

geometry is contoured in order to produce a varying (favorable and adverse) streamwise 

flow acceleration. The countered top of the geometry is built to match the experimental 

pressure distribution on the plate and it is also responsible for producing a non-zero 

streamwise velocity gradient, which is negligible for the ZPG test cases 

 

Figure 5.1 Meshes used for flat plate test cases. 

(a) ZPG flat plate T3A-, T3A, T3B. (b) Pressure gradient flat plate T3C2 

The inlet conditions were identical to those reported in [5], and were found to 

reproduce the correct freestream decay of turbulent kinetic energy, in agreement with the 

experimental data. The inlet values for the dimensionless turbulence variables are listed 

in Table 5.2. 

Table 5.2 Leading edge freestream conditions for flat plate test cases 

Test case Tu(%) 𝝁𝑻
𝝁⁄  

T3A- 0.874 8.73 

T3A 3.3 12.0 

T3B 6.5 100.0 

T3C2 3.0 11.0 
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The effective turbulent viscosity used to determine the inlet value of   is defined 

as: 

 




2

* v
T
  (5.31) 

Figure 5.2 Skin friction coefficient for flat plate test cases. 

(a) T3A-, (b) T3A, (c) T3B, (d) T3C2 

 

Figure 5.2 shows the skin friction coefficient versus dimensionless downstream 

distance predicted by the new model (
2

v  Model) compared with the experimental data 
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[18], the fully turbulent SST k  model [21] and the 
LT

kk  transitional model 

[5]. First, it is apparent that the 2
v  model predicts very well the transition location in all 4 

cases. For the ZPG cases, the shear stress levels in the laminar and transitional region 

show excellent agreement with the experimental data, while a small overprediction is 

apparent in the pretransitonal region for the T3C2 case. All cases show a smooth 

transition rather than a sudden jump in shear stress levels. Figure 5.2 shows clearly that 

the SST k  model is incapable of predicting transition, which is a very important 

feature in all the cases above. This is expected since this model was developed to be 

applied solely to fully turbulent flows. There is also a slight improvement on the 

transition location of the 2
v  model compared with the transitional 

LT
kk  model. 

The levels of shear stress are almost the same in both models in the pretransitional and 

fully turbulent regions. 

Figure 5.3 and 5.4 show the velocity and total kinetic energy profiles of the 

presented 
2

v  model and the 
LT

kk  model. The profiles of the SST model are not 

included due to its inability to resolve laminar and transitional flows. The profiles were 

obtained in the locations 
5

10Re 
x

 for the laminar region, 
5

1025.2Re 
x

 for the 

transitional region and 
5

105Re 
x

 for the turbulent region. The results in the velocity 

profiles are slightly better for the 
2

v  model in all regions, while the 
LT

kk  model 

better captures the peaks of the total kinetic energy in all three regions. In general the 

results of the two transitional models are very similar in all four cases, and it is concluded 

that the proposed model correctly inherits the transitional behavior of the baseline model, 

as expected. 
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Figure 5.3 Velocity profiles in the laminar, transitional and turbulent regions 

respectively for the T3A case. 
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Figure 5.4 Turbulent kinetic energy profiles in the laminar, transitional and turbulent 

regions respectively for the T3A case. 
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VPI cascade 

A more realistic geometry that illustrates the importance of transitional models is 

the airfoil test case performed at the Virginia Polytechnic Institute, and documented for 

the express purpose of validating CFD simulations. As shown previously, the transition in 

the boundary layer affects the skin friction distribution, which indirectly affects the 

separation or reattachment of the flow in airfoils, and it can dramatically alter the force 

and moment distribution of lifting bodies. The experiments were documented by 

Radomsky and Thole [34,35].  

 

Figure 5.5 Periodic domain and mesh for the VPI cascade 
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The mesh and boundary conditions for this test case are the same as in [5], The 

hybrid mesh in figure 5.5 was built with 24,386 cells. The inlet air velocity was 5.85 ms, 

which corresponds to a Reynolds number of 230,000 based on a chord length of 59.4 cm. 

Two test cases, corresponding to relatively high freestream turbulence levels of 10% and 

19.5%, were run. For the two cases, the specific dissipation rate was chosen to 

correspond to a turbulent viscosity ratio 
T

 of 900 and 2100, respectively. 

A constant heat flux boundary condition was applied on the airfoil surface and the 

heat transfer coefficient was calculated using the three models previously discussed for 

comparison. Figure 5.6 shows heat transfer coefficient versus distance along the airfoil 

surface (from the stagnation point) normalized by chord length (s /C). Negative values of 

s indicate the pressure surface; positive values indicate the suction surface. Transition is 

achieved for both transitional models with relatively equal accuracy in both cases, while 

the SST model again fails to reproduce this result. 
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Figure 5.6 Heat transfer coefficient for the VPI test case. 

(a) %10


Tu , (b) %5.19


Tu  
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Backward facing step 

The third boundary layer test case used in this study is the backward facing step, 

which is a widely used benchmark test case for turbulence model validation. In this test 

case the flow separates at the step with a reattachment farther downstream. Figure 5.7 

shows the geometry and mesh. In order to let the flow develop, the domain before the 

step was built to measure H100 , where cmH 27.1  is the high of the step. With an inlet 

velocity of sm2.44  and %0.3


Tu , the flow is fully turbulent at the step location. The 

details of the experimental configuration are found in [36]. 

Figure 5.8 shows the pressure distribution and the skin friction coefficient 

calculated at the wall of the domain (bottom part). The flow is fully turbulent in this 

section of the domain and the SST model shows a slightly better performance related to 

the transitional models. The negative and positive peaks in the pressure coefficient are 

very well captured by the SST model, followed in accuracy by the proposed 2
v  model. 

The three models show good accuracy in predicting the skin friction coefficient. The 

reattachment point is very well predicted by the SST model, while it occurs a little bit 

early for the 
2

v  model and much earlier for the 
LT

kk  model. 

Figure 5.9 shows the mean stream wise velocity profiles at different locations 

after the step. In the recirculation zone (x/H=1.0, 2.0, 3.0), the SST model accurately 

predicts the velocity profiles in the boundary layer, while, in the other two models, the 

negative peak close to the wall is over predicted. The two transitional models behave in 

nearly the same form away from the wall. After reattachment, the 
2

v  model seems to be 

more accurate inside the boundary layer (but not too close to the wall) than the other 

models, while they have a similar behavior outside of the boundary layer. 
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The boundary layer experiments have demonstrated the ability of the 2
v  model to 

predict transitional flows with reasonable accuracy, similar to its baseline model, the 


LT

kk  model. Furthermore, based on the previous test cases, it is clear that 

laminar-to-turbulent transition is an important an inherent characteristic in several fluid 

flow fields, however, the SST k  model is incapable of predicting this process. In the 

next subsection, the models will be tested on free shear flows where the 2
v  model is 

expected to be superior to the 
LT

kk  model. 

 

Figure 5.7 Geometry and mesh for the backward facing step 
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Figure 5.8 Pressure coefficient and skin friction coefficient calculated at the bottom 

wall. 
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Figure 5.9 Mean velocity profiles at different streamwise stations. 
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Free shear flows 

Up to this point, the 2
v  and 

LT
kk  transitional models have been compared 

on transitional boundary layers, and so far it has been demonstrated that the 2
v  model 

behaves qualitatively equal to its baseline model, and sometimes with minor 

improvements for particular test cases. In this section the models will be tested for free 

shear flows, where studies have demonstrated ([22]) that the 
LT

kk  model does not 

predict the characteristics of such flows well. 

Round jet flow 

Jets are widely used in many engineering applications such as cooling systems or 

aerodynamic stabilization of floating strips [71]. Their fully turbulent characteristics and 

capacity for high mixing process make them appealing in many processes. There are 

several experimental and numerical studies ([22], [27], [37]) involving axisymmetric 

round jet flows, in which the performance of RANS models is mixed. Of particular 

interest are the results of Ghahremanian and Moshfegh in [22]. They studied the behavior 

of several transitional and fully turbulent RANS models on a three-dimensional fully 

turbulent, round jet. Their results show that the 
LT

kk  transitional model performs 

poorly for this particular case. One of the key goals of this research is to correct these 

apparent failures in free shear flows of the 
LT

kk  in the new 
2

v  model. 
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Figure 5.10 Computational domain configuration for the jet. 

 

A sketch for the domain and the mesh used are shown in figures 5.10 and 5.11. 

Only half of the domain was used in the calculations, taking the centerline of the domain 

as a symmetry axis. The flow conditions follow the values reported in the experimental 

study in [37], with a jet exit velocity of sm2.56  and turbulence intensity less than 

0.58%. In the experimental studies, the flow is manipulated to transition to turbulent 

before the exit of the jet. Due to this, two grids were used in this study. In the first the 

length of the channel before the exit is 3H and the fully turbulent SST k  model was 

run in this domain and profiles of velocity, turbulent kinetic energy and specific 

dissipation rate were obtained at 1.5H from the inlet of the channel. In the second mesh, 

the length of the channel before the exit is 1.5H. The profiles obtained from the SST 

model were used as inlet condition for the 
2

v  and 
LT

kk  transitional models. 
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Figure 5.11 Mesh used for jet flow test case. 

 

Figures 5.12 and 5.13 show very clearly the advantages of the new 
2

v  transitional 

model, over the existing 
LT

kk  model. The latter is incapable of predicting the 

centerline velocity decay of the jet, while the 2
v  model perform nearly as well as the SST 

model. This behavior of the 
LT

kk  model was previously documented in [22], 

along with other results obtained from other RANS turbulent models where the SST 

k  model was clearly superior to the others. The combination of these results could 

suggest that the proposed 
2

v  model is a competitive alternative among RANS transitional 

models. 
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Figure 5.12 Inverse centerline velocity decay. 

(a) Inverse centerline velocity decay. (b) Close-up at the exit of the channel. 
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Near the exit of the channel, the 2
v  model predicts the virtual origin of the jet (the 

distance between the exit of the channel and the x-intercept of the straight line 

representing the inverse velocity decay) to occur too early, which causes a small 

deviation from the experimental data near the exit of the channel. Further downstream 

(about 35H) the 2
v and the SST models behave asymptotically equal. 

In figure 5.14, the cross-sectional mean velocity profiles are plotted versus the 

nondimensional radial coordinate )(
0

xxy  , where 
0

x  represents the virtual origin 

predicted by each model. The results are compared with experimental data (Stationary 

Hot Wire (SHW), Laser-Doppler anemometry (LDA) and Flying Hot Wire (FHW)) 

reported in [37]. While the SST and the 
2

v  model produce reasonably accurate results, 

the 
LT

kk  model shows significant discrepancy away from the centerline of the 

yet. 

The jet flow results clearly demonstrate the advantages of the proposed 2
v  model 

compared with its baseline model. For free shear flows, the 
2

v  model behaves more like 

the SST k  model, while in transitional boundary layers it inherits the characteristics 

of the 
LT

kk  model. 
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Figure 5.13 Centerline velocity decay. 



www.manaraa.com

 

68 

 

Figure 5.14 Cross-sectional mean axial velocity profiles. 

(a) x/H=50, (b) x/H=75, (c) x/H=100. 
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Finite flat plate 

In this section, a finite thin flat plate placed parallel to a uniform stream is 

considered. At the end of the plate a wake flow is formed and the models will be 

evaluated in that region. The flat plate wake is considered as an idealized configuration of 

flows behind two dimensional streamlined airfoils or gas turbine blade. The change from 

a wall bounded shear-flow type to a boundary free flow makes the test case appealing for 

testing turbulence models. 

 

Figure 5.15 Mesh for the finite flat plate test case 

 

Figure 5.15 shows the mesh used for the finite flat plate test case. The 

configuration of the domain and flow conditions match the experimental investigation in 

[38]. The plate was considered infinitesimally thin and the freestream velocity was 
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sm6.8  while the turbulence intensity was less than 0.2%. In the experimental studies, 

the flow is manipulated again to make the flow transition before the flow reach the 

trailing edge of the plate by using of a 1.4 mm diam tripping wires on both surfaces of the 

plate near the leading edge. Again, two meshes were built. In the first, the length of the 

plate is 0.6m and it is placed with the leading edge at a distance of 0.1m from the inlet 

exactly as illustrated in figure 5.15. The fully turbulent SST k  model was run using 

this mesh and profiles of velocity, turbulent kinetic energy and specific dissipation rate 

were calculated at a distance 0.1m downstream of the leading edge of the plate. In the 

second mesh the length of the plate is 0.5m and the leading edge of the plate is placed 

exactly at the inlet of the domain. The profiles taken from the SST k  model were 

used as inlet conditions for the 
LT

kk  and 
2

v  models. 
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Figure 5.16 Mean velocity profiles calculated at different locations downstream in the 

wake region. 
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Figure 5.16 shows plots of the profiles of velocity normalized by the friction 

velocity 
*

u  at the trailing edge of the plate, versus the vertical distance normalized by the 

inner-wake-layer length scale 
**

ul  . The friction velocity was calculated using the 

SST k  model to ensure consistent comparison across all models. 

The results show good agreement of the velocity profiles calculated with the 2
v  

model and the experimental data. When the velocity approaches the freestream value; the 

SST k  and 2
v  models reproduce the correct behavior of the flow while the 


LT

kk  model produces a smooth curve before reaching the freestream value, which 

is not characteristic of the profiles. 

 

Figure 5.17 Mean centerline velocity along the wake compared with experimental data 

at different Reynolds numbers 
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In figure 5.17 the centerline velocity is compared with experimental data obtained 

with different freestream velocities (different momentum thickness Reynolds number in 

figure 5.17) reported in [38]. The SST k  model is more accurate near the trailing 

edge of the plate, but the 2
v  model results are more accurate far downstream. 

The results for the finite flat plate confirm the SST-like behavior of the 2
v  model 

for free shear flows which leads to more accurate results compared to the 
LT

kk  

model. This suggests that the 2
v  model has a wider range of applications compared to the 


LT

kk  model, and can be more confidently applied for complex test cases that 

contain features of both attached boundary layers and separated shear flows. 
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CHAPTER VI 

A SIMPLER MODEL FORMULATION FOR TRANSITIONAL FLOWS 

This chapter presents a new model formulation for prediction of boundary layer 

transition using a linear eddy-viscosity RANS approach. It is a single-point, physics-

based method that adopts the transition concept presented in the previous chapters as an 

alternative to the (LKE) framework. The version of the model presented here uses the 

SST k  model as the baseline, and includes the effects of transition through one 

additional transport equation for 2
v . Here 2

v
 is interpreted as in the previous chapter, it 

represents the energy of fully turbulent, three-dimensional velocity fluctuations, while k 

represents the energy of both fully turbulent and pre-transitional velocity fluctuations. 

Simplicity of the formulation and ease of extension to other baseline models are two 

potential advantages of the new method. 

The model in chapter V improves the accuracy of the 
LT

kk  model in [5] 

when the term that controls the behavior in the wake region is replaced by a SST-like 

term. It is valid to say that the gain in accuracy was achieved by increasing the 

complexity of the model. 

The new transitional model presented in this chapter is an initial version of a 

model that is intended to be dramatically simpler in the formulation of the equations 
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and with less model constants than the model presented in chapter V, but with at least 

the same accuracy. The initial version of this model is presented in the next sections. 

Model equations 

For simplicity the equations are presented in their incompressible forms. The 

model equations have the compact form:  
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where P denotes production, D denotes destruction, and 𝑅𝜐2 is the transition term that 

represents the activation of pressure strain terms during transition. The model terms are 

defined such that, in fully turbulent regions of the flowfield, kv 
2  and a form similar 

to the SST k  model is recovered. Transition initiates when the value of the term 𝑅𝜐2 

becomes non-negligible, representing “activation” of the pressure strain terms and a 

change in structure of the fluctuating velocity field from Klebanoff modes to three-

dimensional, energetic turbulence. 

The production terms are expressed as: 

 S
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Note that the production of 2
v  includes the multiplier 𝐹𝑇, which represents the 

suppressive effect of the near-wall shear layer on the pressure strain terms. This term also 

appears in the generation term for specific dissipation rate,  , since transition is 

expected to be accompanied by a rapid reduction in turbulence length and time scales. 

The turbulent viscosity is modified to adopt a velocity scale based on the “fully 

turbulent” energy, 2
v , and a wall-limited length scale: 

 
TT

LvC
2


   (6.5) 

 













 dC

k
L

LT

*
,min 


 (6.6) 

The eddy viscosity coefficient introduces a realizability constraint similar to the 

SST k  model: 
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1

1
 (6.7) 

Note the simplicity in the formulation of the turbulent viscosity 
T

  defined by equations 

(6.5)-(6.7) compared with the same term in the 
2

v  model (defined in equations (5.8)-

(5.19)) of chapter V. 

The near-wall damping function 𝐹𝑇 controls the initiation of transition: 

 ),max(
21 TTT
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Note that the arguments in equations (6.8, 6.9) have similarities with the analogous terms 

in the previous physics-based model discussed in chapter V. Again, activation of the 

pressure strain terms and transition initiation is expected to occur when the viscous 

diffusion time scale becomes large relative to the time scale associated with the 

breakdown instability. The reader is referred to [5] for more details. 

The destruction terms include isotropic and near-wall components: 
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The pressure-strain analog that drives the transitional behavior in the model is 

expressed in a form similar to a basic “return-to-isotropy” model: 

 )(
2

32 vkCR
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The form of Eq. (6.17) indicates that both slow and rapid parts are included. Note that, 

when 𝐹𝑇= 1, the model will tend to enforce that 𝜐2→𝑘. In fact, in any region of the 
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flowfield for which 𝐹𝑇= 1 and 𝜐2= 𝑘, the solutions for 𝜐2 and 𝑘 will remain identical, 

which follows the conceptual description outlined above, i.e. all fluctuating energy is 

assumed to be classical three-dimensional turbulence. 

The new model constants introduced in the transition-sensitive formulation were 

calibrated to best fit the experimental data of the 4 different flat plate test cases presented 

in this chapter and discussed in the next section, they are: 

𝐶𝐿 = 2.495 ;  𝐶𝑇1 = 100 ;  𝐶𝑇2 = 3.5 ; 𝐶𝑇3 = 0.008 

𝐶𝑊 = 0.3 ;  𝐶𝜓 =
7

8
 

All other constants take the same values as in the SST k-  model. Note the number of 

constants (without including the ones in the original SST k- ) used in the formulation of 

this new model compared with the number of constants in table 1 for previous model. 

The simplicity of the new model is clear compared with the description of the model in 

chapter V. 

The wall boundary conditions are different for the SST k-  model: the new 

model will use 𝑘 = 𝜔 =  𝜐2 = 0. The dissipation increases near the wall due to (6.14) 

rather than enforcing a large value of   at the wall. Equations (6.14,6.15) ensure that the 

dissipation is asymptotically correct to leading order as y→0. The inlet values are 

calculated similar than in the model in chapter V, using equation (5.33) and 
2

vk  . For 

  instead of using (5.34), it is correct to use 

 




2
v

T
  (6.18) 
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Test cases 

This section presents 6 test cases already discussed in chapter V. The flat plate 

geometry without and with pressure gradient is used in order test the ability of the model 

to predict the transition process. The correct behavior in the transition zone is the most 

challenging part in this case because the baseline model used is a fully turbulent model in 

contrast to the transitional model used in chapter V. The backward facing step test case is 

used to check the SST-like behavior of the new model in the fully turbulent region. 

Flat plate 

In this section the test cases are identical to the flat plate test cases discussed in 

chapter V. Again the T3A-, T3A, T3B and T3C2 validation cases from the classic 

ERCOFTAC database are considered. They were developed specifically for validation of 

transition models and have become a recognized standard in the research community. 

Figure 6.1 shows the skin friction coefficient predicted by the new model, which 

will be identified as “Simpler 
2

v  Model”, compared with experimental data. Although 

this is only a preliminary version of the model, some key features are apparent. First, the 

transition location is relatively well predicted in most of the cases, and moves upstream 

as freestream turbulence intensity increases. Due to this, the new model shows a slightly 

earlier transition initiation for the T3B test case. Second, the wall shear stress in both the 

laminar (pretransitional) and fully turbulent regions predicted by the model is in good 

agreement with the expected values indicated by the experimental data. The transition 

occurs too fast for the T3A- case, but for the other cases, the transition is smooth, rather 

than sudden and nearly discontinuous. All of these aspects are positive and important 

characteristics of RANS single-point models for transition prediction. 
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Figure 6.1 Skin friction coefficient calculated with the new model compared against 

experimental data. 

(a) T3A-, (b)T3A, (c)T3B, (d)T3C2. 

 

VPI cascade 

The configuration for this test case is identical to the description presented for the 

same test case in chapter V. For completeness of the section, the configuration of the test 

case is included in this section. 

Figure 5.15 shows the domain and hybrid two-dimensional mesh used. The inlet 

air velocity was 5.85 m/s, which corresponds to a Reynolds number of 230,000 based on 

a chord length of 59.4 cm. Due to the limitation of this initial version of the model, just 
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one test case was performed. Inlet conditions matched the freestream turbulence level of 

10% and turbulent viscosity ratio 
T

 of 900. 

A constant heat flux boundary condition was applied on the airfoil surface and the 

heat transfer coefficient was calculated in the simulation and compared with experimental 

data.  

 

Figure 6.2 Heat transfer coefficient calculated along the surface of the airfoil for 

%10


Tu . 

 

Figure 6.2 shows heat transfer coefficient versus distance along the airfoil surface 

(from the stagnation point) normalized by chord length (s/C). Negative values of s 

indicate the pressure surface; positive values indicate the suction surface. It is apparent 
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that the simpler 2
v  model can predict the transition location with reasonable accuracy for 

this case. In the transition zone, the levels of heat transfer coefficient increase very fast, 

which indicates that transition is not smooth as suggested by the experimental data. 

Besides that, the heat transfer coefficient does not reach the desired values in the fully 

turbulent region. 

Despite the lack of accuracy in some parts of the domain shown in figure 6.2, it is 

worthwhile to highlight the transitional behavior demonstrated by the model over the 

airfoil test case. This result in addition to the ones on the flat plate with and without 

pressure gradient demonstrate the potential of the new model to achieve high levels of 

accuracy for the prediction of transitional flows using a much simpler model form. 

Backward facing step 

The simpler 2
v  model uses the fully-turbulent shear stress transport model 

proposed by Menter in [48], therefore this new model is expected to behave similar to the 

SST k  model in fully turbulent regions. The primary challenge for the proposed 

simpler 
2

v  model is the correct incorporation of the transition process. Nevertheless, the 

model has to be tested for fully turbulent flows to demonstrate that the inclusion of 

transitional capabilities does not affect the benefits of the baseline model in fully 

turbulent regions. 

The backward facing step test case was chosen to test the hypothesis described in 

the previous paragraph. Again the same domain configuration, mesh and initial 

conditions as in chapter V were used to test the new model. The details were described in 

chapter V and also in [36]. The length of the domain prior the step is long enough to 
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guarantee transition and fully developed flow characteristics before the step. The flow is 

fully turbulent before it reaches the step, where it separates and then reattachment occurs 

farther downstream. These characteristics make the test case a good test case for fully 

turbulent validations. 

Figure 6.2 shows the pressure coefficient and skin friction coefficient predicted by 

the model and compared with experimental data. The results are very accurate and, as 

expected, show similar behavior as the fully turbulent SST k  model. This confirms 

that in fully turbulent regions, 𝜐2→𝑘 and the solutions for 𝜐2 and 𝑘 tend to be identical 

and a similar version of the SST model is effectively recovered. 
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Figure 6.3 Skin and pressure coefficient calculated at the bottom wall. 
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CHAPTER VII 

CONCLUSIONS 

In this study, a new methodology for the description of the transition process in 

turbulence models for use in CFD simulations has been proposed as an alternative to the 

laminar kinetic energy approach. This new methodology has been used to further develop 

two physics-based, single-point, linear eddy-viscosity RANS transitional models. The 

first one uses the existing 
LT

kk  transitional model presented in [5] as a baseline, 

along with a transformation of variables to a 
2

vk    form. The term that controls the 

behavior in the wake region was modified in the baseline model to accurately capture the 

physics of fully turbulent free shear flows. The model formulation was tested for several 

boundary layer and free shear flow test cases. The simulations show accurate results, 

qualitatively equal to the baseline model on transitional boundary layer test cases, and 

substantially improve over the baseline model for free shear flows. The second model 

uses the SST k  fully turbulent model and again the effects of transition are included 

through one additional transport equation for 
2

v . An initial version of the model is 

presented here. 

The major contributions and findings are summarized as follows: 
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 The introduction of the new variable 2
v  seems to represent better the 

description of the transition process described in this research and initially 

introduced by Walters in [25] 

 Even though the 2
v  model is intended to be qualitatively equal to the 

baseline model when predicting the transition process, the transition 

location predicted by the new model is slightly better for the majority of 

the test cases presented 

 The cross-diffusion term from the SST k  model effectively 

incorporates the benefits of the SST k  model on the wake region into 

the new 2
v  model 

 The new 2
v  model now has a wider range of applications than its baseline 

model 

 The simpler 
2

v  model confirms that the new methodology for the 

transition process may be potentially incorporated into other fully 

turbulent models 

 The initial results of the simpler 
2

v  model suggest there is a good 

potential in the model for a future version, without sacrificing the 

simplicity of the model. 

In general, theoretical and practical advantages of the new methodology for the 

description of the transition process have been shown. It was effectively incorporated in 

an existing transition model, and a good potential to easily include transitional 

characteristics to fully turbulent models has been demonstrated with the simpler 
2

v  
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model. Further investigation and development of the simpler 2
v  model will provide a 

robust model with a very simple formulation. 
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APPENDIX A 

FLUENT SOURCE CODE FOR MODELS OF CHAPTERS V AND VI 
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FLUENT source code for model in chapter V 

#include "udf.h" 
 #include "turb.h" 
  
 
/*USER DEFINED SCALARS*/ 
#define K 0 
#define W 1 
#define V2 2 
#define SRT_K 3 
#define SRT_V2 4 
 
  
/*USER DEFINED MEMORIES*/ 
#define MU_T 3 
#define ALPHA_T 4 
#define DSRTK_DX 5 
#define DSRTV2_DX 6 
#define L_T 7 
#define L_EFF 8 
#define F_WALL 9 
#define F_NU 10 
#define F_SS 11 
#define C_MU 12 
#define V2_S 13 
#define V2_L 14 
#define MU_TS 15 
#define MU_TL 16 
#define F_OMEGA 17 
#define R_BP 18 
#define PROD_V2 19 
#define PROD_K 20 
#define RE_T 21 
#define RE_ROT 22 
#define F_INT 23 
#define B_TS 24 
#define F_TAU 25 
#define MU_TL0 26 
#define MU_TL1 27 
#define PHI_BP 28 
#define BETA_BP 29 
#define DK_DW 30 
#define F_1 31 
#define RT_K_GRAD_SQR 32 
#define RT_V2_GRAD_SQR 33 
#define D_W_K 34 
#define D_W_V2 35 
#define F_NAT_CRIT 37 
#define PHI_NAT 38 
#define BETA_NAT 39 
#define R_NAT 40 
 
/* MODEL CONSTANTS */ 
#define A_0 4.04 
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#define A_S 2.12 
#define A_NU 3.8 
#define A_BP 0.2 
#define A_NAT 200. 
#define A_TS 200. 
#define C_BP_CRIT 1.5 
#define C_NC 0.1 
#define C_NAT_CRIT 1450.0 
#define C_INT 0.95 
#define C_TS_CRIT 1000.0 
#define C_R_NAT 0.02 
#define C_R1 0.32 
#define C_ALP_THE 0.035 
#define C_SS 3.0 
#define C_TAU 4360.0 
#define C_W1 0.44 
#define C_W2 0.92 
#define C_W3 0.3 
#define C_WR 1.15 
#define C_L 2.495 
#define C_MU_STD 0.09 
#define Pr_T 0.85 
#define SIG_K 1.0 
#define SIG_W 1.17 
#define TINY 1.e-12 
 
 
/* ========================== Properties ================================ */ 
 
DEFINE_TURBULENT_VISCOSITY(mod_mu_t, c, t) 
{ 
 return C_UDMI(c,t,MU_T); 
} 
 
DEFINE_DIFFUSIVITY(user_diffusivity, c, t, eqn) 
{ 
real diff; 
switch(eqn) 
 { 
 case K: 
   diff = C_MU_L(c,t) + C_UDMI(c,t,ALPHA_T)/SIG_K; 
   break; 
 case W: 
   diff = C_MU_L(c,t) + C_UDMI(c,t,ALPHA_T)/SIG_W; 
   break; 
 case V2: 
   diff=  C_MU_L(c,t) + C_UDMI(c,t,ALPHA_T)/SIG_K; 
   break; 
 default: 
   diff = C_MU_L(c,t) + C_UDMI(c,t,MU_T); 
 } 
return diff; 
} 
 
DEFINE_PRANDTL_T(user_pr_t, c, t) 
{ 
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 real DIFF_NRG = (1.-
C_UDMI(c,t,F_WALL))*0.035*C_R(c,t)*sqrt(C_UDMI(c,t,V2))*C_UDMI(c,t,L_EFF) + 
(C_UDMI(c,t,V2)/C_UDMI(c,t,K))*C_UDMI(c,t,F_WALL)*C_UDMI(c,t,MU_TS)/0.85; 
 return (C_UDMI(c,t,MU_T)+0.00085*C_MU_L(c,t))/(DIFF_NRG+0.001*C_MU_L(c,t)); 
} 
 
/*============================= Adjust Functions 
================================*/ 
DEFINE_ADJUST(adjust_fn_kw_sst, domain) 
{ 
Thread *t; 
cell_t c; 
 
 
real arg_1, cd_kw, d_eff, re_rot1; 
 
thread_loop_c(t,domain) 
 { 
 if (&C_UDSI_G(0,t,K)[0] != NULL) 
  { 
  begin_c_loop(c,t) 
   {  
   C_UDMI(c,t,K) = MAX(C_UDSI(c,t,K),0.5*(C_UDMI(c,t,K)+1.e-18)); 
   C_UDMI(c,t,V2) = MAX(C_UDSI(c,t,V2),0.5*(C_UDMI(c,t,V2)+1.e-18)); 
   C_UDMI(c,t,W) = MAX(C_UDSI(c,t,W),0.5*(C_UDMI(c,t,W)+1.e-18));  
  
 
/*===================== Determine "anisotropic" dissipation 
components=========================*/ 
 
 
   C_UDSI(c,t,SRT_K)=sqrt(C_UDMI(c,t,K)); 
   C_UDSI(c,t,SRT_V2)=sqrt(C_UDMI(c,t,V2)); 
 
 
   
C_UDMI(c,t,DSRTK_DX)=C_UDSI_G(c,t,SRT_K)[0]*C_UDSI_G(c,t,SRT_K)[0]+C_UDSI_G(c,t,SR
T_K)[1]*C_UDSI_G(c,t,SRT_K)[1]; 
   
C_UDMI(c,t,DSRTV2_DX)=C_UDSI_G(c,t,SRT_V2)[0]*C_UDSI_G(c,t,SRT_V2)[0]+C_UDSI_G(c,t
,SRT_V2)[1]*C_UDSI_G(c,t,SRT_V2)[1];  
 
 
#if RP_3D 
   C_UDMI(c,t,DSRTK_DX) +=C_UDSI_G(c,t,SRT_K)[2]*C_UDSI_G(c,t,SRT_K)[2]; 
   C_UDMI(c,t,DSRTV2_DX) +=C_UDSI_G(c,t,SRT_V2)[2]*C_UDSI_G(c,t,SRT_V2)[2];  
#endif 
 
 
   C_UDMI(c,t,RT_K_GRAD_SQR) = 0.5*C_UDMI(c,t,DSRTK_DX) + 
0.5*C_UDMI(c,t,RT_K_GRAD_SQR); 
   C_UDMI(c,t,RT_V2_GRAD_SQR) = 0.5*C_UDMI(c,t,DSRTV2_DX) + 
0.5*C_UDMI(c,t,RT_V2_GRAD_SQR); 
    
   C_UDMI(c,t,D_W_K) = 2.*(C_MU_L(c,t)/C_R(c,t))*C_UDMI(c,t,RT_K_GRAD_SQR); 
   C_UDMI(c,t,D_W_V2) = 2.*(C_MU_L(c,t)/C_R(c,t))*C_UDMI(c,t,RT_V2_GRAD_SQR); 
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/*////////////////////////////////////////////////////////////////////////////*/ 
 
   C_UDMI(c,t,L_T) = sqrt(C_UDMI(c,t,V2))/C_UDMI(c,t,W); 
   C_UDMI(c,t,L_EFF) = MIN(C_L*C_WALL_DIST(c,t),C_UDMI(c,t,L_T)); /*Effective 
Turbulence Length Scale*/ 
   C_UDMI(c,t,F_WALL) = pow(C_UDMI(c,t,L_EFF)/C_UDMI(c,t,L_T),0.666667); 
 
   C_UDMI(c,t,RE_T) = 
pow(C_UDMI(c,t,F_WALL),2.0)*C_UDMI(c,t,V2)*C_R(c,t)/(C_MU_L(c,t)*C_UDMI(c,t,W)); 
 
   C_UDMI(c,t,F_NU) = 1.0 - exp(-sqrt(C_UDMI(c,t,RE_T))/A_NU); 
   C_UDMI(c,t,F_SS) = exp(-
pow(C_SS*C_MU_L(c,t)*Rotationrate_Mag(c,t)/(C_UDMI(c,t,V2)*C_R(c,t)),2.0)); 
   C_UDMI(c,t,C_MU) = 1.0/(A_0+A_S*(Strainrate_Mag(c,t)/C_UDMI(c,t,W))); 
/*Turbulent viscosity coefficient*/ 
 
   C_UDMI(c,t,F_INT) = MIN(C_UDMI(c,t,V2)/(C_INT*C_UDMI(c,t,K)),1.0); 
 
 
   C_UDMI(c,t,V2_S) = C_UDMI(c,t,F_SS)*C_UDMI(c,t,F_WALL)*C_UDMI(c,t,V2); 
/*Effective "small-scale" turbulence*/ 
   C_UDMI(c,t,MU_TS) = 
C_R(c,t)*C_UDMI(c,t,F_NU)*C_UDMI(c,t,F_INT)*C_UDMI(c,t,C_MU)*sqrt(C_UDMI(c,t,V2_S)
)*C_UDMI(c,t,L_EFF);/*"small-scale" eddy viscosity*/ 
    
   C_UDMI(c,t,V2_L) = C_UDMI(c,t,V2) - C_UDMI(c,t,V2_S); /*Effective "large-scale" 
turbulence*/ 
 
   d_eff = C_UDMI(c,t,L_EFF)/C_L; 
 
 
   re_rot1=d_eff*d_eff*Rotationrate_Mag(c,t)*C_R(c,t)/C_MU_L(c,t); 
   C_UDMI(c,t,RE_ROT) = 
C_WALL_DIST(c,t)*C_WALL_DIST(c,t)*Rotationrate_Mag(c,t)*C_R(c,t)/C_MU_L(c,t); 
   C_UDMI(c,t,B_TS) = 1.0 - exp(-pow(MAX(C_UDMI(c,t,RE_ROT) - 
C_TS_CRIT,0.0),2.0)/A_TS); 
   C_UDMI(c,t,F_TAU) = 1.0 - exp(-
C_TAU*C_UDMI(c,t,V2_L)/(pow(C_UDMI(c,t,L_EFF)*Rotationrate_Mag(c,t),2.0)+TINY)); 
    
   
C_UDMI(c,t,MU_TL0)=C_R(c,t)*(0.0000034)*C_UDMI(c,t,F_TAU)*C_R(c,t)*Rotationrate_Ma
g(c,t)*pow(C_UDMI(c,t,L_EFF),3.0)*sqrt(C_UDMI(c,t,V2_L))/C_MU_L(c,t); 
   C_UDMI(c,t,MU_TL1)=0.5*C_R(c,t)*(MAX(C_UDMI(c,t,K)-
C_UDMI(c,t,V2_S),0))/(Strainrate_Mag(c,t)+TINY); 
   C_UDMI(c,t,MU_TL) = MIN(C_UDMI(c,t,MU_TL0)+C_R(c,t)*C_UDMI(c,t,B_TS)*(1.e-
10)*re_rot1*pow(d_eff,2.0)*Rotationrate_Mag(c,t),C_UDMI(c,t,MU_TL1)); /*"Large-
scale" eddy viscosity*/ 
    
   C_UDMI(c,t,ALPHA_T) = 
C_R(c,t)*C_UDMI(c,t,F_NU)*C_MU_STD*sqrt(C_UDMI(c,t,V2_S))*C_UDMI(c,t,L_EFF); 
 
   C_UDMI(c,t,F_OMEGA) = 1.0 - exp(-0.41*pow(C_UDMI(c,t,F_WALL),4.0)); 
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   C_UDMI(c,t,PHI_BP) = 
MAX(C_UDMI(c,t,V2)*C_R(c,t)/(Rotationrate_Mag(c,t)*C_MU_L(c,t)+TINY) - 
C_BP_CRIT,0.0); 
 
   C_UDMI(c,t,BETA_BP) = 1.0 - exp(-C_UDMI(c,t,PHI_BP)/A_BP);  
   C_UDMI(c,t,R_BP) = C_R1*C_R(c,t)*C_UDMI(c,t,BETA_BP)*MAX(C_UDMI(c,t,K)-
C_UDMI(c,t,V2),0.0)*C_UDMI(c,t,W)/C_UDMI(c,t,F_WALL); 
 
   C_UDMI(c,t,F_NAT_CRIT) = 1.0 - exp(-
C_NC*C_R(c,t)*sqrt(C_UDMI(c,t,K))*C_WALL_DIST(c,t)/C_MU_L(c,t)); 
   C_UDMI(c,t,PHI_NAT) = MAX(C_UDMI(c,t,RE_ROT)-
C_NAT_CRIT/(C_UDMI(c,t,F_NAT_CRIT)+TINY),0.0); 
   C_UDMI(c,t,BETA_NAT) = 1.0 - exp(-C_UDMI(c,t,PHI_NAT)/A_NAT); 
   C_UDMI(c,t,R_NAT) = C_R(c,t)*C_R_NAT*C_UDMI(c,t,BETA_NAT)*MAX(C_UDMI(c,t,K)-
C_UDMI(c,t,V2),0.0)*Rotationrate_Mag(c,t); 
 
 
    C_UDMI(c,t,MU_T)=C_UDMI(c,t,MU_TS) + C_UDMI(c,t,MU_TL);  /*Eddy viscosity*/ 
 
    /*Production of V2 and K*/ 
    C_UDMI(c,t,PROD_V2) = 
C_UDMI(c,t,MU_TS)*Strainrate_Mag(c,t)*Strainrate_Mag(c,t); 
    C_UDMI(c,t,PROD_K) = C_UDMI(c,t,MU_T)*Strainrate_Mag(c,t)*Strainrate_Mag(c,t); 
 
 
 
     /* SST terms */ 
   C_UDMI(c,t,DK_DW) = C_UDSI_G(c,t,V2)[0]*C_UDSI_G(c,t,W)[0] + 
C_UDSI_G(c,t,V2)[1]*C_UDSI_G(c,t,W)[1]; 
#if RP_3D 
   C_UDMI(c,t,DK_DW) += C_UDSI_G(c,t,V2)[2]*C_UDSI_G(c,t,W)[2]; 
#endif 
   C_UDMI(c,t,DK_DW) *= MAX(C_UDSI(c,t,V2),0.)/C_UDMI(c,t,V2); 
   C_UDMI(c,t,DK_DW) *= MAX(C_UDSI(c,t,W),0.)/C_UDMI(c,t,W); 
 
   cd_kw = MAX(2.*C_R(c,t)*1.856*C_UDMI(c,t,DK_DW)/C_UDMI(c,t,W),1.e-10); 
   
   arg_1 = MAX( sqrt(C_UDMI(c,t,V2))/(C_UDMI(c,t,W)*C_WALL_DIST(c,t)) , 
500.*0.09*(C_MU_L(c,t)/C_R(c,t))/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t)*C_UDMI(c,t,W)) 
); 
   arg_1 = MIN( arg_1 , 
4.*C_R(c,t)*1.856*C_UDMI(c,t,K)/(cd_kw*C_WALL_DIST(c,t)*C_WALL_DIST(c,t)) ); 
   
   C_UDMI(c,t,F_1) = tanh(pow(arg_1,4.)); 
 
   C_UDMI(c,t,F_1)= 1.0 - ((1.0-C_UDMI(c,t,F_1))*C_UDMI(c,t,F_SS)); 
 
 
 
 
 
 
   } 
  end_c_loop(c,t) 
  } 
 else 
  { 
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  begin_c_loop(c,t) 
   { 
   C_UDMI(c,t,K) = MAX(C_UDSI(c,t,K),1.e-16); 
   C_UDMI(c,t,W) = 
MAX(C_UDSI(c,t,W),0.1*(C_MU_L(c,t)/C_R(c,t))/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t))); 
   C_UDMI(c,t,V2) = MAX(C_UDSI(c,t,V2),1.e-16); 
 
   
   C_UDMI(c,t,MU_T) = C_R(c,t)*C_UDMI(c,t,K)/C_UDMI(c,t,W); 
   } 
  end_c_loop(c,t) 
  } 
 } 
} 
 
 
/* ------------------------- Sources --------------------------- */ 
 
DEFINE_SOURCE(k_source, c, t, dS, eqn) 
{ 
 real S; 
  
 S = C_UDMI(c,t,PROD_K); 
 S -= C_R(c,t)*C_UDMI(c,t,W)*MIN(C_UDMI(c,t,K),C_UDMI(c,t,V2)); 
 S -= 2.0*C_MU_L(c,t)*C_UDMI(c,t,DSRTK_DX)*(C_UDSI(c,t,K)/C_UDMI(c,t,K)); 
  
 dS[eqn] =-C_R(c,t)*C_UDMI(c,t,W) - 
2.0*C_MU_L(c,t)*C_UDMI(c,t,DSRTK_DX)*(1.0/C_UDMI(c,t,K)); 
  
 return S; 
} 
 
DEFINE_SOURCE(omega_source, c, t, dS, eqn) 
{ 
real S,PWC; 
       
 PWC = C_W1*C_UDMI(c,t,PROD_V2)*C_UDMI(c,t,W)/C_UDMI(c,t,V2); 
  
 real f_sst =0.09*2.*(1.-
C_UDMI(c,t,F_1))*C_R(c,t)*1.856*C_UDMI(c,t,DK_DW)/C_UDMI(c,t,W); 
 real a_0 = PWC + (C_WR/C_UDMI(c,t,F_WALL)-
1.)*(C_UDMI(c,t,R_BP)+C_UDMI(c,t,R_NAT))*C_UDMI(c,t,W)/C_UDMI(c,t,V2) + 
MAX(f_sst,0.); 
 real a_1 = - C_R(c,t)*C_W2*C_UDMI(c,t,W)*C_UDMI(c,t,F_WALL)*C_UDMI(c,t,F_WALL) + 
MIN(f_sst,0.)/C_UDMI(c,t,W); 
 
 S = a_0 + a_1*C_UDSI(c,t,W); 
 dS[eqn] = a_1; 
 return S; 
 
} 
 
DEFINE_SOURCE(V2_source, c, t, dS, eqn) 
{ 
 real S; 
 
 S = C_UDMI(c,t,PROD_V2); 
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 S += C_UDMI(c,t,R_BP)+C_UDMI(c,t,R_NAT); 
 S -= C_R(c,t)*C_UDMI(c,t,W)*C_UDMI(c,t,V2); 
 
 S -= 2.0*C_MU_L(c,t)*C_UDMI(c,t,DSRTV2_DX)*(C_UDSI(c,t,V2)/C_UDMI(c,t,V2)); 
 
  
 dS[eqn] = - C_R(c,t)*C_UDMI(c,t,W) - 
2.0*C_MU_L(c,t)*C_UDMI(c,t,DSRTV2_DX)*(1.0/C_UDMI(c,t,V2)); 
            
 
 return S; 
} 
 
 
 
 
 

FLUENT source code for the model in chapter VI 

#include "udf.h" 
 #include "turb.h" 
  
 
/*USER DEFINED SCALARS*/ 
#define K 0 
#define W 1 
#define V2 2 
#define RT_K 3 
#define RT_V2 4 
 
  
/*USER DEFINED MEMORIES*/ 
#define MU_T 3 
#define L_T 4 
#define SIG_K 5 
#define SIG_W 6 
#define F_1 7 
#define BETA 8 
#define CD_KW 9 
#define GAMMA 10 
#define PROD_K 11 
#define DK_DW 12 
#define F_EPS_W 13 
#define DRTV2_DX 14 
#define FT 15 
#define L_TT 16 
#define DRTK_DX 17 
 
 
/* MODEL CONSTANTS */ 
#define BETA_STAR 0.09 
#define BETA_1 0.075 
#define BETA_2 0.0828 
#define SIG_K_1 0.85 
#define SIG_K_2 1.0 
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#define SIG_W_1 0.5 
#define SIG_W_2 0.856 
#define GAMMA_1 0.555 
#define GAMMA_2 0.44 
#define A_1 0.31 
#define CR_V2 1 
#define CT1 0.0010 
#define CT2 100.0 
#define CT3 3.5 
 
/* ========================== Properties ================================ */ 
DEFINE_TURBULENT_VISCOSITY(mod_mu_t, c, t) 
{ 
 return C_UDMI(c,t,MU_T); 
} 
 
DEFINE_DIFFUSIVITY(user_diffusivity, c, t, eqn) 
{ 
real diff; 
switch(eqn) 
 { 
 case K: 
   diff = C_MU_L(c,t) + C_UDMI(c,t,MU_T)*C_UDMI(c,t,SIG_K); 
   break; 
 case W: 
   diff = C_MU_L(c,t) + C_UDMI(c,t,MU_T)*C_UDMI(c,t,SIG_W); 
   break; 
 case V2: 
   diff=  C_MU_L(c,t) + C_UDMI(c,t,MU_T)*C_UDMI(c,t,SIG_K); 
   break; 
 default: 
   diff = C_MU_L(c,t) + C_UDMI(c,t,MU_T); 
 } 
return diff; 
} 
 
DEFINE_PRANDTL_T(user_pr_t,c,t) 
{ 
  real pr_t, lam_eff, lam_t, fw, nu_t, alpha_t; 
 
  nu_t=C_UDMI(c,t,MU_T)/C_R(c,t); 
  lam_t=sqrt(C_UDMI(c,t,V2))/(0.03*C_UDMI(c,t,W)+1.e-16); 
  
lam_eff=MIN(2.495*C_WALL_DIST(c,t),sqrt(C_UDMI(c,t,V2))/(0.03*C_UDMI(c,t,W))+1.e-
16); 
  fw=lam_eff/(lam_t+1.e-16); 
 
  alpha_t=fw*(C_UDMI(c,t,V2)/C_UDMI(c,t,K))*(nu_t/0.85) + 0.035*(1.0-
fw)*sqrt(C_UDMI(c,t,V2))*lam_eff; 
 
  pr_t=nu_t/(alpha_t+1.e-16); 
   
  return pr_t; 
} 
 
/*============================= Adjust Functions ==============================*/ 
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DEFINE_ADJUST(adjust_fn_kw_sst, domain) 
{ 
Thread *t; 
cell_t c; 
 
real arg_1, arg_2, arg_3, F_2, c_mu, f_mu, re_y, F_T1,F_T2; 
 
thread_loop_c(t,domain) 
 { 
 if (&C_UDSI_G(0,t,K)[0] != NULL) 
  { 
  begin_c_loop(c,t) 
   {  
   C_UDMI(c,t,K) = MAX(C_UDSI(c,t,K),1.e-16); 
   C_UDMI(c,t,W) = MAX(C_UDSI(c,t,W),1.e-16); 
   C_UDMI(c,t,V2) = MAX(C_UDSI(c,t,V2),1.e-16); 
 
   C_UDMI(c,t,DK_DW) = C_UDSI_G(c,t,K)[0]*C_UDSI_G(c,t,W)[0] + 
C_UDSI_G(c,t,K)[1]*C_UDSI_G(c,t,W)[1];  
 
 
  /* Other Wall destruction term*/ 
 
 
   C_UDSI(c,t,RT_K)=sqrt(C_UDMI(c,t,K)); 
   C_UDSI(c,t,RT_V2)=sqrt(C_UDMI(c,t,V2)); 
 
  
C_UDMI(c,t,DRTK_DX)=C_UDSI_G(c,t,RT_K)[0]*C_UDSI_G(c,t,RT_K)[0]+C_UDSI_G(c,t,RT_K)
[1]*C_UDSI_G(c,t,RT_K)[1]; 
   
C_UDMI(c,t,DRTV2_DX)=C_UDSI_G(c,t,RT_V2)[0]*C_UDSI_G(c,t,RT_V2)[0]+C_UDSI_G(c,t,RT
_V2)[1]*C_UDSI_G(c,t,RT_V2)[1];  
/*////////////////////////////////////////////////////////////////////////////*/ 
 
#if RP_3D 
   C_UDMI(c,t,DK_DW) += C_UDSI_G(c,t,K)[2]*C_UDSI_G(c,t,W)[2]; 
#endif 
 
  /* =================SST Terms============================*/ 
 
   C_UDMI(c,t,CD_KW) = 
MAX(2.*C_R(c,t)*SIG_W_2*C_UDMI(c,t,DK_DW)/C_UDMI(c,t,W),1.e-10); 
    
   arg_1 = MAX( sqrt(C_UDMI(c,t,K))/(BETA_STAR*C_UDMI(c,t,W)*C_WALL_DIST(c,t)) , 
500.*(C_MU_L(c,t)/C_R(c,t))/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t)*C_UDMI(c,t,W)) ); 
   arg_1 = MIN( arg_1 , 
4.*C_R(c,t)*SIG_W_2*C_UDMI(c,t,K)/(C_UDMI(c,t,CD_KW)*C_WALL_DIST(c,t)*C_WALL_DIST(
c,t)) ); 
   
   C_UDMI(c,t,F_1) = tanh(pow(arg_1,4.)); 
   
   C_UDMI(c,t,SIG_K) = C_UDMI(c,t,F_1)*SIG_K_1 +(1.-C_UDMI(c,t,F_1))*SIG_K_2; 
   C_UDMI(c,t,SIG_W) = C_UDMI(c,t,F_1)*SIG_W_1 + (1.-C_UDMI(c,t,F_1))*SIG_W_2; 
   C_UDMI(c,t,GAMMA) = C_UDMI(c,t,F_1)*GAMMA_1 + (1.-C_UDMI(c,t,F_1))*GAMMA_2; 
   C_UDMI(c,t,BETA) = C_UDMI(c,t,F_1)*BETA_1 + (1.-C_UDMI(c,t,F_1))*BETA_2; 
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   arg_2 = MAX( 2.*sqrt(C_UDMI(c,t,K))/(BETA_STAR*C_UDMI(c,t,W)*C_WALL_DIST(c,t)) 
, 500.*(C_MU_L(c,t)/C_R(c,t))/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t)*C_UDMI(c,t,W)) ); 
   
   F_2 = tanh(arg_2*arg_2); 
   
   c_mu = A_1/MAX(A_1,Strainrate_Mag(c,t)/C_UDMI(c,t,W)); 
   re_y = sqrt(C_UDMI(c,t,V2))*C_WALL_DIST(c,t)*C_R(c,t)/C_MU_L(c,t); 
 
   arg_3 = C_WALL_DIST(c,t)*C_WALL_DIST(c,t)*C_UDMI(c,t,W)*C_R(c,t)/C_MU_L(c,t); 
   C_UDMI(c,t,F_EPS_W) = exp(-0.3*sqrt(arg_3)); 
 
C_UDMI(c,t,L_T)=MIN(sqrt(C_UDMI(c,t,K))/C_UDMI(c,t,W),2.495*BETA_STAR*C_WALL_DIST(
c,t)); 
  C_UDMI(c,t,L_TT)=C_UDMI(c,t,L_T)*c_mu; /* Length scale */ 
    C_UDMI(c,t,MU_T)=C_R(c,t)*sqrt(C_UDMI(c,t,V2))*C_UDMI(c,t,L_TT); /* Eddy 
viscosity */ 
 
   C_UDMI(c,t,PROD_K)=C_UDMI(c,t,MU_T)*Strainrate_Mag(c,t)*Strainrate_Mag(c,t);/* 
TKE Production */ 
 
   /* Transition Terms */ 
    F_T1=1. - exp(-
pow(sqrt(C_UDMI(c,t,V2))*C_WALL_DIST(c,t)*C_R(c,t)/(C_MU_L(c,t)*CT2),2.0)); 
    F_T2=1. - exp(-
pow(C_UDMI(c,t,V2)*C_R(c,t)/(C_MU_L(c,t)*Strainrate_Mag(c,t)*CT3),2.0)); 
 
   C_UDMI(c,t,FT) = MAX(F_T1,F_T2); 
   } 
  end_c_loop(c,t) 
  } 
 else 
  { 
  begin_c_loop(c,t) 
   { 
   C_UDMI(c,t,K) = MAX(C_UDSI(c,t,K),1.e-16); 
   C_UDMI(c,t,W) = 
MAX(C_UDSI(c,t,W),0.1*(C_MU_L(c,t)/C_R(c,t))/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t))); 
   C_UDMI(c,t,V2) = MAX(C_UDSI(c,t,V2),1.e-16); 
 
   C_UDMI(c,t,CD_KW) = MAX(C_UDMI(c,t,CD_KW),1.e-10); 
   
   C_UDMI(c,t,MU_T) = C_R(c,t)*C_UDMI(c,t,K)/C_UDMI(c,t,W); 
   } 
  end_c_loop(c,t) 
  } 
 } 
} 
 
 
/* ================================ Sources ===================================*/ 
 
DEFINE_SOURCE(k_source, c, t, dS, eqn) 
{ 
 real S; 
  
 S = C_UDMI(c,t,PROD_K); 
 S -= BETA_STAR*C_R(c,t)*C_UDMI(c,t,W)*C_UDSI(c,t,K); 
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 S -= 
2.*C_MU_L(c,t)*C_UDMI(c,t,F_EPS_W)/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t))*C_UDSI(c,t,
K); 
  
 dS[eqn] = - BETA_STAR*C_R(c,t)*C_UDMI(c,t,W) - 
2.*C_MU_L(c,t)*C_UDMI(c,t,F_EPS_W)/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t)); 
  
 return S; 
} 
 
DEFINE_SOURCE(omega_source, c, t, dS, eqn) 
{ 
 real S; 
 
 S = 
C_UDMI(c,t,FT)*C_UDMI(c,t,GAMMA)*C_R(c,t)*sqrt(C_UDMI(c,t,V2)/C_UDMI(c,t,K))*Strai
nrate_Mag(c,t)*(0.3*C_UDMI(c,t,W)); 
 S -= C_UDMI(c,t,BETA)*C_R(c,t)*C_UDMI(c,t,W)*C_UDSI(c,t,W); 
 S += C_UDMI(c,t,FT)*2.*(1.-
C_UDMI(c,t,F_1))*C_R(c,t)*SIG_W_2*C_UDMI(c,t,DK_DW)/(C_UDMI(c,t,W)*C_UDMI(c,t,W))*
C_UDSI(c,t,W); 
 S -= 
2.*C_MU_L(c,t)*C_UDMI(c,t,F_EPS_W)/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t))*C_UDSI(c,t,
W); 
  
 dS[eqn] = - C_UDMI(c,t,BETA)*C_R(c,t)*C_UDMI(c,t,W) - 
2.*C_MU_L(c,t)*C_UDMI(c,t,F_EPS_W)/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t)); 
 
 return  S; 
} 
 
DEFINE_SOURCE(V2_source, c, t, dS, eqn) 
{ 
 real S; 
 
 real wt = 
8.0*Strainrate_Mag(c,t)+7.0*C_UDMI(c,t,W)*(C_UDMI(c,t,K)/C_UDMI(c,t,V2)); 
 
 S = C_UDMI(c,t,FT)*C_UDMI(c,t,V2)*C_UDMI(c,t,PROD_K)/C_UDMI(c,t,K); 
 S -= BETA_STAR*C_R(c,t)*C_UDMI(c,t,W)*C_UDSI(c,t,V2); 
 S -= 
2.*C_MU_L(c,t)*C_UDMI(c,t,F_EPS_W)/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t))*C_UDSI(c,t,
V2); 
 S += CT1*C_UDMI(c,t,FT)*C_R(c,t)*wt*(C_UDMI(c,t,K)-C_UDSI(c,t,V2)); 
  
 dS[eqn] = - BETA_STAR*C_R(c,t)*C_UDMI(c,t,W)*sqrt(C_UDMI(c,t,V2)/C_UDMI(c,t,K)) - 
2.*C_MU_L(c,t)*C_UDMI(c,t,F_EPS_W)/(C_WALL_DIST(c,t)*C_WALL_DIST(c,t))  
           - CT1*C_UDMI(c,t,FT)*C_R(c,t)*wt; 
 
 return S; 
} 
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